Previous |  Up |  Next

Article

Title: Conjugate gradient algorithms for conic functions (English)
Author: Lukšan, Ladislav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 6
Year: 1986
Pages: 427-440
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The paper contains a description and an analysis of two modifications of the conjugate gradient method for unconstrained minimization which find a minimum of the conic function after a finite number of steps. Moreover, further extension of the conjugate gradient method is given which is based on a more general class of the model functions. (English)
Keyword: conjugate gradient method
Keyword: unconstrained optimization
Keyword: conic function
Keyword: interpolations
Keyword: algorithm
MSC: 65K05
MSC: 65K10
MSC: 90C20
MSC: 90C30
idZBL: Zbl 0622.65045
idMR: MR0870480
DOI: 10.21136/AM.1986.104222
.
Date available: 2008-05-20T18:31:02Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104222
.
Reference: [1] J. Abaffy F. Sloboda: Imperfect conjugate gradient algorithms for extended quadratic functions.Numer. Math. 42, 97-105 (1983). MR 0716476, 10.1007/BF01400920
Reference: [2] E. M. L. Beale: A derivation of conjugate gradients.In: Nonlinear Optimization (Lootsma, F.A., ed.) New York: Academic Press 1972. Zbl 0279.65052, MR 0381696
Reference: [3] P. Bjørstad J. Nocedal: Analysis of a new algorithm for one-dimensional minimization.Computing 22, 93-100 (1979). MR 0620386, 10.1007/BF02246561
Reference: [4] W. R. Boland E. R. Kamgnia J. S. Kowalik: A conjugate-gradient optimization method invariant to nonlinear scaling.J. Optimization Theory Appl. 27, 221 - 230 (1979). MR 0529861, 10.1007/BF00933228
Reference: [5] W. C. Davidon: Conic approximations and collinear scalings for optimizers.SIAM J. Numer. Anal. 17, 268-281 (1980). Zbl 0424.65026, MR 0567273, 10.1137/0717023
Reference: [6] L. C. W. Dixon: Conjugate gradient algorithms: Quadratic termination properties without line searches.J. Inst. Math. Appl. 15, 9-18 (1975). MR 0368429, 10.1093/imamat/15.1.9
Reference: [7] R. Fletcher C. M. Reeves: Function minimization by conjugate gradients.Comput. J. 7, 149-154 (1964). MR 0187375, 10.1093/comjnl/7.2.149
Reference: [8] I. Fried: N-step conjugate gradient minimization scheme for nonquadratic functions.AIAA J. 9, 2286-2287 (1971). Zbl 0235.65040, MR 0359800, 10.2514/3.6507
Reference: [9] M. R. Hestenes E. Stiefel: The method of conjugate gradients for solving linear systems.J. Res. Nat. Bur. Standards, Section B 49, 409-436 (1952). MR 0060307, 10.6028/jres.049.044
Reference: [10] J. S. Kowalik E. R. Kamgnia W. R. Boland: An exponential function as a model for a conjugate gradient optimization method.J. Math. Anal. Appl. 67, 476-482 (1979). MR 0528701, 10.1016/0022-247X(79)90037-4
Reference: [11] M. J. D. Powell: Restart procedures for the conjugate gradient method.Math. Programming 12, 241-254 (1977). Zbl 0396.90072, MR 0478622, 10.1007/BF01593790
Reference: [12] J. E. Shirey: Minimization of extended quadratic functions.Numer. Math. 39, 157-161 (1982). Zbl 0491.65038, MR 0669312, 10.1007/BF01408690
Reference: [13] F. Sloboda: An imperfect conjugate gradient algorithm.Aplikace matematiky 27, 426-434 (1982). Zbl 0503.65017, MR 0678112
Reference: [14] F. Sloboda: A generalized conjugate gradient algorithm for minimization.Numer. Math. 35, 223-230 (1980). Zbl 0424.65033, MR 0585248, 10.1007/BF01396318
Reference: [15] D. C. Sorensen: The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization.SIAM J. Numer. Anal. 17, 84-114 (1980). Zbl 0428.65040, MR 0559465, 10.1137/0717011
.

Files

Files Size Format View
AplMat_31-1986-6_3.pdf 1.808Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo