Previous |  Up |  Next

Article

Title: On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition (English)
Author: Hlaváček, Ivan
Author: Křížek, Michal
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 2
Year: 1987
Pages: 131-154
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Second order elliptic systems with Dirichlet boundary conditions are solved by means of affine finite elements on regular uniform triangulations. A simple averagign scheme is proposed, which implies a superconvergence of the gradient. For domains with enough smooth boundary, a global estimate $O(h^{3/2})$ is proved in the $L^2$-norm. For a class of polygonal domains the global estimate $O(h^2)$ can be proven. (English)
Keyword: post-processing
Keyword: averaged gradient
Keyword: Galerkin method
Keyword: system
Keyword: finite elements
Keyword: superconvergence
Keyword: global estimate
Keyword: elliptic systems
MSC: 35J25
MSC: 65N15
MSC: 65N30
MSC: 73C99
MSC: 74S05
idZBL: Zbl 0622.65097
idMR: MR0885758
DOI: 10.21136/AM.1987.104242
.
Date available: 2008-05-20T18:31:54Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104242
.
Reference: [1] S. Agmon A. Douglis L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II.Comm. Pure Appl. Math. 17 (1964), 35-92. MR 0162050, 10.1002/cpa.3160170104
Reference: [2] A. B. Andreev: Superconvergence of the gradient for linear triangle elements for elliptic and parabolic equations.C. R. Acad. Bulgare Sci. 37 (1984), 293 - 296. Zbl 0575.65106, MR 0758156
Reference: [3] I. Babuška A. Miller: The post-processing technique in the finite element method.Parts I-III, Internat. J. Numer. Methods Engrg. 20 (1984), 1085-1109, 1111-1129.
Reference: [4] C. M. Chen: Optimal points of the stresses for triangular linear element.Numer. Math. J. Chinese Univ. 2 (1980), 12-20. Zbl 0534.73057, MR 0619174
Reference: [5] C. M. Chen: $W^{1,\infty}$-interior estimates for finite element method on regular mesh.J. Comput. Math. 3 (1985), 1-7. Zbl 0603.34024, MR 0815405
Reference: [6] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [7] I. Hlaváček M. Hlaváček: On the existence and uniqueness of solutions and some variational principles in linear theories of elasticity with couple-stresses.Apl. Mat. 14 (1969), 387-410. MR 0250537
Reference: [8] V. P. Iljin: Svojstva někotorych klassov differenciruemych funkcij mnogich peremennych, zadannych v n-mernoj oblasti.Trudy Mat. Inst. Steklov. 66 (1962), 227-363.
Reference: [9] M. Křížek P. Neittaanmäki: Superconvergence phenomenon in the finite element method arising from averaging gradients.Numer. Math. 45 (1984), 105-116. MR 0761883, 10.1007/BF01379664
Reference: [10] M. Křížek P. Neittaanmäki: On Superconvergence techniques.Preprint n. 34, Univ. of Jyväskylä, 1984, 1 - 43 (to appear in Acta Appl. Math.). MR 0900263
Reference: [11] N. Levine: Superconvergent recovery of the gradient from piecewise linear finite element approximations.IMA J. Numer. Anal. 5 (1985), 407-427. Zbl 0584.65067, MR 0816065, 10.1093/imanum/5.4.407
Reference: [12] Q. Lin J. Ch. Xu: Linear finite elements with high accuracy.J. Comput. Math. 3 (1985), 115-133. Zbl 0577.65094, MR 0854355
Reference: [13] A. Louis: Acceleration of convergence for finite element solutions of the Poisson equation.Numer. Math. 33 (1979), 43-53. Zbl 0435.65090, MR 0545741, 10.1007/BF01396494
Reference: [14] L. A. Oganesjan V. J. Rivkind L. A. Ruchovec: Variational-difference methods for the solution of elliptic equations. Part I.(Proc. Sem., Issue 5, Vilnius, 1973), Inst. of Phys. and Math., Vilnius, 1973, 3-389.
Reference: [15] L. A. Oganesjan L. A. Ruchovec: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional regions with smooth boundary.Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102-1120. MR 0295599
Reference: [16] L. A. Oganesjan L. A. Ruchovec: Variational-difference methods for the solution of elliptic equations.Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979.
Reference: [17] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [18] J. Nečas I. Hlaváček: On inequalities of Korn's type.Arch. Rational Mech. Anal. 36 (1970), 305-334. MR 0252844, 10.1007/BF00249518
Reference: [19] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction.Elsevier, Amsterdam, Oxford, New York, 1981. MR 0600655
Reference: [20] V. Thomée: High order local approximations to derivatives in the finite element method.Math. Соmр. 31 (1977), 652-660. MR 0438664
Reference: [21] B. Westergren: Interior estimates for elliptic systems of difference equations.(Thesis). Univ. of Goteborg, 1982.
Reference: [22] Q. D. Zhu: Natural inner Superconvergence for the finite element method.(Proc. China-France Sympos. on the Finite Element method, Beijing, 1982), Science Press, Beijing, Gordon and Breach, New York, 1983, 935-960. MR 0754041
Reference: [23] M. Zlámal: Superconvergence and reduced integration in the finite element method.Math. Соmр. 32 (1978), 663-685. MR 0495027
.

Files

Files Size Format View
AplMat_32-1987-2_4.pdf 3.151Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo