Previous |  Up |  Next

Article

Title: On the Signorini problem with friction in linear thermoelasticity: The quasi-coupled 2D-case (English)
Author: Nedoma, Jiří
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 3
Year: 1987
Pages: 186-199
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the 2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise linear finite elements on the triangulation of the given domain, numerical procedures are proposed. The finite element analysis for the Signorini problem with friction on the contact boundary $\Gamma_\alpha$ of a polygonal domain $G\subset R^2$ is given. The rate of convergence is proved if the exact solution is sufficiently regular. (English)
Keyword: Signorini problem
Keyword: model problem in geodynamics
Keyword: simulation of dynamic plate tectonic model
Keyword: collision zones
Keyword: equilibrium equation
Keyword: heat conduction equation
Keyword: two-dimensional quasi-steady-state thermoelastic contact problem
Keyword: Coulomb friction
Keyword: Existence
Keyword: uniqueness
Keyword: finite element method
Keyword: piecewise linear functions
Keyword: triangulation
Keyword: thermal part
Keyword: quadratic programming
Keyword: elastic part
Keyword: approximation of a saddle point
MSC: 49J40
MSC: 73T05
MSC: 73U05
MSC: 74A55
MSC: 74F05
MSC: 74L05
MSC: 74M15
MSC: 74S30
idZBL: Zbl 0631.73098
idMR: MR0895877
DOI: 10.21136/AM.1987.104250
.
Date available: 2008-05-20T18:32:15Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104250
.
Reference: [1] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892
Reference: [2] G. Duvaut: Equilibre d'un solide élastique avec contact unilatéral ef frottement de Coulomb.C.R.A.S. 290 (1980) A 263-265. MR 0564325
Reference: [3] G. Duvaut J. L. Lions: Les inéquations en mechanique et en physique.Dunod, Paris 1972. MR 0464857
Reference: [4] I. Ekeland R. Temam: Convex Analysis and Variational Problems.North Holland, Amsterdam 1976. MR 0463994
Reference: [5] R. S. Falk: Error estimates for approximation of a class of variational inequalities.Math. of Соmр. 28 (1974), 963-971. MR 0391502
Reference: [6] R. Glowinski J. L. Lions R. Trémoliéres: Analyse Numerique des inéqualitions variationnelles.Dunod, Paris 1976.
Reference: [7] J. Haslinger: Approximation of the Signorini problem with friction obeying the Coulomb law.Math. Meth. in Sci Appl. 5 (1983). Zbl 0525.73130, MR 0716664, 10.1002/mma.1670050127
Reference: [8] J. Haslinger I. Hlaváček: Approximation of the Signorini problem with friction by a mixed element method.J. Math. Anal. Appl. 86 (1983) 1, 99-122, MR 0649858, 10.1016/0022-247X(82)90257-8
Reference: [9] J. Haslinger J. Tvrdý: Approximation and numerical solution of contact problems with friction.Apl. mat. 28 (1983) 1, 55-74. MR 0684711
Reference: [10] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Solving Variational Inequalities in Mechanics.(in Slovak). ALFA, Bratislava 1982.
Reference: [11] I. Hlaváček J. Lovíšek: A finite element analysis for the Signorini problem in plane elastostastatics.Apl. mat. 22 (1977), 215-228. MR 0446014
Reference: [12] J. Jarušek: Contact problems with friction.Thesis, MFFUK, Praha 1980 (in Czech).
Reference: [13] J. Jarušek: Contact problems with bounded friction. Coercive case.Czech. Math. J. 33 (1983) 2, 237-261. MR 0699024
Reference: [14] J. Jarušek: Contact problems with bounded friction. Semicoercive case.Czech. Math. J. 34 (109) (1984), 619-629. MR 0764444
Reference: [15] J. Nečas J. Jarušek J. Haslinger: On the solution of the variational inequality to the Signorini problem with small friction.Boll. Unione Mat. Ital. (5) 17-B (1980), 796-811. MR 0580559
Reference: [16] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam 1981. MR 0600655
Reference: [17] J. Nedoma: Some mathematical problems of contemporary geodynamics and some of their solution.(manuscript 1979).
Reference: [18] J. Nedoma: The use of the variational inequalities in geophysics.Proc. Summer school "Algorithms and software of numerical mathematics" (Nové Město n. M. 1979) MFF UK, Praha 1980 (in Czech).
Reference: [19] J. Nedoma: Model of Carpathian Continent/Continent Collision.Symposium on Plate Tectonics of Eastern Europe, EGS-ESC Budapest 8,24-29 August 1980, Budapest 1980. Proc. of the 17th Assembly of the ESC Budapest 1980, 629-637.
Reference: [20] J. Nedoma: Variational methods and finite element method in geophysical problems.In: Computational methods in geophysics. Radio i svyaz, Moscow 1981 (in Russian).
Reference: [21] J. Nedoma: Thermoelastic stress-strain analysis of the geodynamic mechanism.Gerlands Beitr. Geophysik, Leipzig 91 (1982) 1, 75-89.
Reference: [22] J. Nedoma: Contribution to the study of the geotectonic stress field in the region of the West Carpathians:.Proc. of the 2nd Inter. Symposium on the Analysis of Seismicity and on Seismic Hazard, Liblice, Czechoslovakia, May 18-23, 1981, Geoph. Inst, Czech. Acad. Sci, Prague 1982, 321-338. MR 0411367
Reference: [23] J. Nedoma: On one type of Signorini problem without friction in linear thermoelasticity.Apl. mat. 28 (1983) 6, 393-407. MR 0723201
.

Files

Files Size Format View
AplMat_32-1987-3_3.pdf 1.712Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo