Previous |  Up |  Next

Article

Title: On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type (English)
Author: Hlaváček, Ivan
Author: Křížek, Michal
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 3
Year: 1987
Pages: 200-213
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: A simple superconvergent scheme for the derivatives of finite element solution is presented, when linear triangular elements are employed to solve second order elliptic systems with boundary conditions of Newton's or Neumann's type. For bounded plane domains with smooth boundary the local $O(h^{3/2})$-superconvergence of the derivatives in the $L^2$-norm is proved. The paper is a direct continuations of [2], where an analogous problem with Dirichlet's boundary conditions is treated. (English)
Keyword: finite element
Keyword: triangular elements
Keyword: superconvergence
Keyword: post-processing
Keyword: averaged gradient
Keyword: elliptic systems
MSC: 35J25
MSC: 65N15
MSC: 65N30
MSC: 73-08
MSC: 73C99
MSC: 74S05
idZBL: Zbl 0636.65115
idMR: MR0895878
DOI: 10.21136/AM.1987.104251
.
Date available: 2008-05-20T18:32:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104251
.
Reference: [1] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [2] I. Hlaváček M. Křížek: On a superconvergent finite element scheme for elliptic systems, I. Dirichlet boundary conditions.Apl. Mat. 32 (1987), 131 -154. MR 0885758
Reference: [3] I. Hlaváček J. Nečas: On inequalities of Korn's type.Arch. Rational Mech. Anal. 36 (1970), 305-311, 312-334. 10.1007/BF00249518
Reference: [4] M. Křížek P. Neittaanmäki: Superconvergence phenomenon in the finite element method arising from averaging gradients.Numer. Math. 45 (1984), 105-116. MR 0761883, 10.1007/BF01379664
Reference: [5] L. A. Oganesjan L. A. Ruchovec: Variational-difference methods for the solution of elliptic equations.Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979.
Reference: [6] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [7] M. Zlámal: Some superconvergence results in the finite element method.Mathematical Aspects of Finite Element Methods (Proc. Conf., Rome, 1975). Springer-Verlag, Berlin, Heidelberg, New York, 1977, 353-362. MR 0488863
.

Files

Files Size Format View
AplMat_32-1987-3_4.pdf 1.889Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo