Previous |  Up |  Next

Article

Title: Stability of invariant measure of a stochastic differential equation describing molecular rotation (English)
Author: Maslowski, Bohdan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 5
Year: 1987
Pages: 346-354
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Stability of an invariant measure of stochastic differential equation with respect to bounded pertubations of its coefficients is investigated. The results as well as some earlier author's results on Liapunov type stability of the invariant measure are applied to a system describing molecular rotation. (English)
Keyword: structural stability
Keyword: invariant measure of a stochastic differential equation
Keyword: Lyapunov type function
Keyword: molecular rotation model
MSC: 60H10
MSC: 93E15
idZBL: Zbl 0636.60058
idMR: MR0909542
DOI: 10.21136/AM.1987.104266
.
Date available: 2008-05-20T18:32:58Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104266
.
Reference: [1] J. McConell: Stochastic differential equation study of nuclear magnetic relaxation by spinrotational interactions.Physica 111A (1982), 85-113. 10.1016/0378-4371(82)90084-X
Reference: [2] I. I. Gikhman A. V. Skorokhod: Стохастические дифференциальные уравнения.Naukova Dumka, Kijev 1968.
Reference: [3] Kiyomasha Narita: Remarks on nonexplosion theorem for stochastic differential equations.Kodai Math. J. 5 (1982), 3, 395-401. MR 0684796, 10.2996/kmj/1138036606
Reference: [4] B. Maslowski: An application of l-condition in the theory of stochastic differential equations.Časopis pěst. mat. 123 (1987), 296-307 MR 0905976
Reference: [5] B. Maslowski: Weak stability of a certain class of Markov processes and applications to nonsingular stochastic differential equations.to appear. Zbl 0644.60050, MR 0944482
Reference: [6] B. Maslowski: Stability of solutions of stochastic differential equations.(Czech), Thesis, Math. Institute of Czech. Academy of Sciences, 1985.
Reference: [7] A. Lasota: Statistical stability of deterministic systems.Proc. of the Internat. Conf. held in Würzburg, FRG, 1982; Lecture Notes in Math. 1017, 386-419. MR 0726599, 10.1007/BFb0103267
Reference: [8] R. Z. Khasminskii: Устойчивсоть систем диффернциальных уравнений при случайных возмущениях их параметров.Nauka, Moscow 1969.
Reference: [9] M. Zakai: A Liapunov criterion for the existence of stationary probability distributions for systems perturbed by noise.SIAM J. Control 7 (1969), 390-397. MR 0263176, 10.1137/0307028
.

Files

Files Size Format View
AplMat_32-1987-5_2.pdf 1.195Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo