Previous |  Up |  Next

Article

Title: On joint distribution in quantum logics. I. Compatible observables (English)
Author: Dvurečenskij, Anatolij
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 6
Year: 1987
Pages: 427-435
Summary lang: English
Summary lang: Russian
Summary lang: Slovak
.
Category: math
.
Summary: The notion of a joint distribution in $\sigma$-finite measures of observables of a quantum logic defined on some system of $\sigma$-independent Boolean sub-$\sigma$-algebras of a Boolean $\sigma$-algebra is studied. In the present first part of the paper the author studies a joint distribution of compatible observables. It is shown that it may exists, although a joint obsevable of compatible observables need not exist. (English)
Keyword: compatibility
Keyword: orthomodular poset
Keyword: observables
Keyword: joint distribution
Keyword: measure
Keyword: quantum logic
MSC: 03G12
MSC: 28A60
MSC: 81B10
MSC: 81P10
idZBL: Zbl 0654.03050
idMR: MR0916059
DOI: 10.21136/AM.1987.104274
.
Date available: 2008-05-20T18:33:20Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104274
.
Reference: [1] F. S. Varadarajan: Geometry of Quantum Theory.Van Nostrand, Princeton (1968). Zbl 0155.56802
Reference: [2] R. Sikorski: Boolean Algebras.Springer-Verlag (1964). Zbl 0123.01303, MR 0126393
Reference: [3] G. Kalmbach: Orthomodular Lattices.Acad. Press, London (1983). Zbl 0528.06012, MR 0716496
Reference: [4] S. P. Gudder: Some unsolved problems in quantum logics.in: Mathematical foundations of quantum theory, A. R. Marlow ed. p. 87-103, Acad. Press, New York (1978). MR 0495813
Reference: [5] S. P. Gudder: Joint distributions of observables.J. Math. Mech. 18, 325-335 (1968). Zbl 0241.60092, MR 0232582
Reference: [6] A. Dvurečenskij S. Pulmannová: On joint distributions of observables.Math. Slovaca 32, 155-166 (1982). MR 0658249
Reference: [7] A. Dvurečenskij S. Pulmannová: Connection between joint distributions and compatibility of observables.Rep. Math. Phys. 19, 349-359 (1984). MR 0745430, 10.1016/0034-4877(84)90007-7
Reference: [8] A. Dvurečenskij: On two problems of quantum logics.Math. Slovaca 36, 253-265 (1986). MR 0866626
Reference: [9] S. Pulmannová: Compatibility and partial compatibility in quantum logics.Ann. Inst. Henri Poincaré, 34, 391-403. (1981). MR 0625170
Reference: [10] S. Pulmannová A. Dvurečenskij: Uncertainty principle and joint distribution of observables.Ann. Inst. Henri Poincaré 42, 253-265 (1985). MR 0797275
Reference: [11] S. Pulmannová: Commutators in orthomodular lattices.Demonstratio Math., 18, 187-208 (1985). MR 0816029
Reference: [12] A. Dvurečenskij: Joint distributions of observables and measures with infinite values.JINR, E 5-85-867, Dubna (1985).
Reference: [13] P. Pták: Spaces of observables.Czech. Math. J. 34 (109), 552-561 (1984). MR 0764437
Reference: [14] L. H. Loomis: On the representation of $\sigma$-complete Boolean algebras.Bull. Amer. Math. Soc. 53, 757-760 (1947). Zbl 0033.01103, MR 0021084, 10.1090/S0002-9904-1947-08866-2
Reference: [15] M. Duchoň: A note on measures in Cartesian products.Acta F. R. N. Univ. Comen. Math., 23, 39-45 (1969). MR 0265546
Reference: [16] G. Birkhoff: Lattice Theory.Nauka, Moscow (1984). MR 0751233
Reference: [17] P. R. Halmos: Measure Theory.IIL Moscow (1953).
Reference: [18] R. Sikorski: On an analogy between measures and homomorphisms.Ann. Soc. Pol. Math., 23, 1-20 (1950). Zbl 0041.17804, MR 0039697
.

Files

Files Size Format View
AplMat_32-1987-6_2.pdf 1.205Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo