Previous |  Up |  Next

Article

Title: On joint distribution in quantum logics. II. Noncompatible observables (English)
Author: Dvurečenskij, Anatolij
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 6
Year: 1987
Pages: 436-450
Summary lang: English
Summary lang: Russian
Summary lang: Slovak
.
Category: math
.
Summary: This paper i a continuation of the first part under the same title. The author studies a joint distribution in $\sigma$-finite measures for noncompatible observables of a quantum logic defined on some system of $\sigma$-independent Boolean sub-$\sigma$-algebras of a Boolean $\sigma$-algebra. We present some necessary and sufficient conditions fot the existence of a joint distribution. In particular, it is shown that an arbitrary system of obsevables has a joint distribution in a measure iff it may be embedded into a system of compatible observables of some quantum logic. The methods used are different from those developed for finite measures. Finally, the author deals with the connection between the existence of a joint distribution and the existence of a commutator of observables, and the quantum logic of a nonseparable Hilbert space is mentioned. (English)
Keyword: measure
Keyword: noncompatible observables
Keyword: joint distribution
Keyword: commutators
Keyword: quantum logic
MSC: 03G12
MSC: 28A60
MSC: 81B10
MSC: 81P10
idZBL: Zbl 0654.03051
idMR: MR0916060
DOI: 10.21136/AM.1987.104275
.
Date available: 2008-05-20T18:33:23Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104275
.
Reference: [I] A. Dvurečenskij: Remark on joint distribution in quantum logics. I. Compatible observables.Apl. mat. 32, 427-435 (1987). MR 0916059
Reference: [19] T. Lutterová S. Pulmannová: An individual ergodic theorem on the Hilbert space logic.Math. Slovaca, 35, 361- 371 (1985). MR 0820633
Reference: [20] S. Pulmannová: Relative compatibility and joint distributions of observables.Found. Phys., 10, 614-653(1980). MR 0659345
Reference: [21] L. Beran: On finitely generated orthomodular lattices.Math. Nachrichten 88, 129-139 (1979). Zbl 0439.06005, MR 0543398, 10.1002/mana.19790880111
Reference: [22] E. L. Marsden: The commutator and solvability in a generalized orthomodular lattice.Рас. J. Math., 33, 357-361 (1970). Zbl 0234.06004, MR 0263712
Reference: [23] W. Puguntke: Finitely generated ortholattices.Colloq. Math. 33, 651-666 (1980).
Reference: [24] G. Grätzer: General Lattice Theory.Birkhauser - Verlag, Basel (1978). MR 0504338
Reference: [25] A. Dvurečenskij: On Gleason's theorem for unbounded measures.JINR, E 5-86-54, Dubna (1986).
.

Files

Files Size Format View
AplMat_32-1987-6_3.pdf 2.006Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo