Full entry |
PDF
(2.0 MB)
Feedback

semi-coercive elliptic problems; Poisson equation; finite elements; convergence; dual problem; a posteriori error estimates; variational inequalities

References:

[1] I. Hlaváček: **Dual finite element analysis for semi-coercive unilateral boundary value problems**. Apl. Mat. 23 (1978), 52-71. MR 0480160

[2] I. Hlaváček: **Dual finite element analysis for elliptic problems with obstacles on the boundary**. Apl. Mat. 22 (1977), 244-255. MR 0440958

[3] J. Haslinger I. Hlaváček: **Convergence of a finite element method based on the dual variational formulation**. Apl. Mat. 21 (1976), 43-65. MR 0398126

[4] R. S. Falk: **Error estimate for the approximation of a class of variational inequalities**. Math. Comp. 28 (1974), 963-971. DOI 10.1090/S0025-5718-1974-0391502-8 | MR 0391502

[5] F. Brezzi W. W. Hager P. A. Raviart: **Error estimates for the finite element solution of variational inequalities. Part I: Primal Theory**. Numer. Math. 28 (1977), 431-443. DOI 10.1007/BF01404345 | MR 0448949

[6] J. Haslinger: **Finite element analysis for unilateral problem with obstacles on the boundary**. Apl. Mat. 22 (1977), 180-188. MR 0440956

[7] I. Hlaváček: **Dual finite element analysis for unilateral boundary value problems**. Apl. Mat. 22 (1977), 14-51. MR 0426453

[8] I. Hlaváček: **Convergence of dual finite element approximations for unilateral boundary value problems**. Apl. Mat. 25 (1980), 375-386. MR 0590491

[9] J. Céa: **Optimisation, théorie et algorithmes**. Dunod, Paris 1971. MR 0298892