Previous |  Up |  Next

Article

Title: Finite element analysis of primal and dual variational formulations of semicoercive elliptic problems with nonhomogeneous obstacles on the boundary (English)
Author: Tran, Van Bon
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 1
Year: 1988
Pages: 1-21
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The Poisson equation with non-homogeneous unilateral condition on the boundary is solved by means of finite elements. The primal variational problem is approximated on the basis of linear triangular elements, and $O(h)$-convergence is proved provided the exact solution is regular enough. For the dual problem piecewise linear divergence-free approximations are employed and $O(h^{3/2})$-convergence proved for a regular solution. Some a posteriori error estimates are also presented. (English)
Keyword: semi-coercive elliptic problems
Keyword: Poisson equation
Keyword: finite elements
Keyword: convergence
Keyword: dual problem
Keyword: a posteriori error estimates
Keyword: variational inequalities
MSC: 35J05
MSC: 65N15
MSC: 65N30
idZBL: Zbl 0638.65077
idMR: MR0934370
DOI: 10.21136/AM.1988.104282
.
Date available: 2008-05-20T18:33:40Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104282
.
Reference: [1] I. Hlaváček: Dual finite element analysis for semi-coercive unilateral boundary value problems.Apl. Mat. 23 (1978), 52-71. MR 0480160
Reference: [2] I. Hlaváček: Dual finite element analysis for elliptic problems with obstacles on the boundary.Apl. Mat. 22 (1977), 244-255. MR 0440958
Reference: [3] J. Haslinger I. Hlaváček: Convergence of a finite element method based on the dual variational formulation.Apl. Mat. 21 (1976), 43-65. MR 0398126
Reference: [4] R. S. Falk: Error estimate for the approximation of a class of variational inequalities.Math. Comp. 28 (1974), 963-971. MR 0391502, 10.1090/S0025-5718-1974-0391502-8
Reference: [5] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities. Part I: Primal Theory.Numer. Math. 28 (1977), 431-443. MR 0448949, 10.1007/BF01404345
Reference: [6] J. Haslinger: Finite element analysis for unilateral problem with obstacles on the boundary.Apl. Mat. 22 (1977), 180-188. MR 0440956
Reference: [7] I. Hlaváček: Dual finite element analysis for unilateral boundary value problems.Apl. Mat. 22 (1977), 14-51. MR 0426453
Reference: [8] I. Hlaváček: Convergence of dual finite element approximations for unilateral boundary value problems.Apl. Mat. 25 (1980), 375-386. MR 0590491
Reference: [9] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892
.

Files

Files Size Format View
AplMat_33-1988-1_1.pdf 2.000Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo