Previous |  Up |  Next

Article

Title: An efficient algorithm for computing real powers of a matrix and a related matrix function (English)
Author: Ježek, Jan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 1
Year: 1988
Pages: 22-32
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The paper is devoted to an algorithm for computing matrices $A^r$ and $(A^r -I).(A-I)^{-1}$ for a given square matrix $A$ and a real $r$. The algorithm uses the binary expansion of $r$ and has the logarithmic computational complexity with respect to $r$. The problem stems from the control theory. (English)
Keyword: matrix power
Keyword: matrix function
Keyword: logarithmic computational complexity
MSC: 15A60
MSC: 65F30
MSC: 68Q25
idZBL: Zbl 0637.65036
idMR: MR0934371
DOI: 10.21136/AM.1988.104283
.
Date available: 2008-05-20T18:33:43Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104283
.
Reference: [1] F. R. Gantmacher: Theory of matrices.(in Russian). Moscow 1966. English translation: Chelsea, New York 1966.
Reference: [2] B. Randell L. J. Russel: Algol 60 Implementation.Academic Press 1964. Russian translation: Mir 1967. MR 0215554
Reference: [3] D. E. Knuth: The art of computer programming, vol 2.Addison-Wesley 1969. Russian translation: Mir 1977. Zbl 0191.18001, MR 0633878
Reference: [4] J. Ježek: Computation of matrix exponential, square root and logarithm.(in Czech). Knižnica algoritmov, diel III, symposium Algoritmy, SVTS Bratislava 1975.
Reference: [5] J.Ježek: General matrix power and sum of matrix powers.(in Czech). Knižnica algoritmov, diel IX, symposium Algoritmy, SVTS Bratislava 1987.
.

Files

Files Size Format View
AplMat_33-1988-1_2.pdf 1.283Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo