Previous |  Up |  Next

Article

Title: Joint distribution of the busy and idle periods of a discrete modified $GI/GI/c/\infty$ queue (English)
Author: Dvurečenskij, Anatolij
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 1
Year: 1988
Pages: 68-76
Summary lang: English
Summary lang: Russian
Summary lang: Slovak
.
Category: math
.
Summary: For a discrete modified $GI/GI/c/\infty$ queue, $1\leq c < \infty$, where the service times of all customers served during any busy period are independent random variables with not necessarily identical distribution functions, the joint distribution of the busy period, the subsequent idle period and the number of customers served during the busy period is derived. The formulae presented are in a convenient form for practical use. The paper is a continuation of [5], where the $M/GI/c/\infty$ discrete modified queue has been studied. (English)
Keyword: distribution of the busy period
Keyword: idle period
Keyword: number of customers
MSC: 60K25
MSC: 90B22
idZBL: Zbl 0658.60126
idMR: MR0934375
DOI: 10.21136/AM.1988.104287
.
Date available: 2008-05-20T18:33:56Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104287
.
Reference: [1] A. A. Borovkov: On discrete queueing systems.Teorija veroj. i prim., 8, 251 - 263 (1963) (in Russian). MR 0154344
Reference: [2] A. A. Borovkov: Stochastic Process in Queueing Theory.Nauka, Moscow (1972) (in Russian). MR 0315800
Reference: [3] A. Dvurečenskij, al.: On a problem of the busy-period determination in queues with infinitely many servers.J. Appl. Prob. 21, 201 - 206 (1984). MR 0732687, 10.2307/3213680
Reference: [4] A. Dvurečenskij G. A. Ososkov: On a modified counter with prolonging dead time.J. Appl. Prob., 22, 678-687(1985). MR 0799290, 10.1017/S0021900200029429
Reference: [5] A. Dvurečenskij: On a discrete modified $M/GI/c/\infty$ queue.Aplikace mat., 32, 214 - 223 (1987). MR 0895879
Reference: [6] V. V. Kalashnikov: On joint distribution of the busy and idle periods of queueing systems.Izv. AN SSSR, Tekh. kiber. no. 6, 106-109 (1917) (in Russian).
Reference: [7] A. G. Pakes: A GI/M/1 queue with a modified service mechanism.Ann. Inst. Statis. Math., 24, 589-597 (1972). Zbl 0311.60054, MR 0336844, 10.1007/BF02479785
Reference: [8] A. G. Pakes: On the busy period of the modified GI/GI/1 queue.J. Appl. Prob., 10, 192-197 (1973). MR 0350902, 10.2307/3212506
Reference: [9] J. G. Shanthikumar: Level crossing of some variants of GI/M/1 queues.Opsearch., 19, 148-159 (1982). MR 0696148
Reference: [10] P. D. Welch: On a generalized M/G/1 queueing process in which the first customer of each busy period receives exceptional service.Oper. res., 12, 736-752 (1964). MR 0176544, 10.1287/opre.12.5.736
Reference: [11] G. F. Yeo: Single server queues with modified service mechanisms.J. Austral. Math. Soc., 3, 491-502( 1962). Zbl 0134.35302, MR 0181026
.

Files

Files Size Format View
AplMat_33-1988-1_6.pdf 1.124Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo