Previous |  Up |  Next

Article

Title: Numerical analysis for optimal shape design in elliptic boundary value problems (English)
Author: Kestřánek, Zdeněk
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 4
Year: 1988
Pages: 322-333
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Shape optimization problems are optimal design problems in which the shape of the boundary plays the role of a design, i.e. the unknown part of the problem. Such problems arise in structural mechanics, acoustics, electrostatics, fluid flow and other areas of engineering and applied science. The mathematical theory of such kind of problems has been developed during the last twelve years. Recently the theory has been extended to cover also situations in which the behaviour of the system is governed by partial differential equations with unilateral boundary conditions. In the paper an efficient method of nonlinear programming for solving optimal shape design problems is presented. The effectiveness of the technique proposed is demonstrated by numerical examples. (English)
Keyword: finite element method
Keyword: shape optimization
Keyword: optimal design
Keyword: method of nonlinear programming
Keyword: numerical examples
Keyword: elliptic boundary value problems
MSC: 49A22
MSC: 49A29
MSC: 49D37
MSC: 49J20
MSC: 49J40
MSC: 49M37
MSC: 65K10
MSC: 65K99
MSC: 65N30
MSC: 65N99
idZBL: Zbl 0662.65062
idMR: MR0949252
DOI: 10.21136/AM.1988.104312
.
Date available: 2008-05-20T18:35:03Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104312
.
Reference: [1] I. Hlaváček J. Nečas: Optimization of the Domain in Elliptic Unilateral Boundary Value Problems by Finite Element Method.R.A.I.R.O.. Num. Anal., V. 16, No. 4, 1982, 351-373. MR 0684830
Reference: [2] I. Hlaváček: Optimization of the Domain in Elliptic Problems by the Dual Finite Element Method.Apl. mat., v. 30, No. 1, 1985, 50-72. MR 0779332
Reference: [3] J. Haslinger P. Neittaanmäki: On Optimal Shape Design of Systems Governed by Mixed Dirichlet-Signorini Boundary Value Problems.Univ. of Jyväskylä, Dept. of Math., Prepr. 22, 1983.
Reference: [4] P. Neittaanmäki T. Tiihonen: Sensitivity Analysis for a Class of Optimal Shape Design Problems.Univ. of Jyväskylä. Dept. of Mathematics, Report 29, 1985. MR 0793016
Reference: [5] M. Avriel: Nonlinear Programming Analysis and Methods.Prentice-Hall, New York, 1976. Zbl 0361.90035, MR 0489892
Reference: [6] M. S. Bazaraa C. M. Shetty: Nonlinear Programming. Theory and Algorithms.John Wiley and Sons, New York, 1979. MR 0533477
Reference: [7] D. Begis R. Glowinski: Application de la méthode des éléments finis a l'approximation d'un problème de domaine optimal.Appl. Math. and Optimization, V. 2, No. 2, 1975. MR 0443372
Reference: [8] J. Céa: Problems of shape optimal design.in [10].
Reference: [9] F. Mignot: Controle dans les inéquations variationnelles.J. Functional Analysis, 22, 1976. MR 0423155, 10.1016/0022-1236(76)90017-3
Reference: [10] : Optimization of distributed parameter structures.Ed. by E. J. Haug and J. Céa, Nato Advanced Study Institutes Series, Series E, no. 49, Sijthoff Noordhoff, Alphen aan den Rijn, 1981. Zbl 0511.00034
Reference: [11] J. Sokolowski J. P. Zolesio: Shape sensitivity analysis for variational inequalities.Lecture Notes in Control and Information Sciences, V. 38, 401 - 406.
Reference: [12] J. Haslinger J. Lovíšek: Domain optimization problem governed by a state inequality with a ,,flux" cost functional.ZAMM 66, 1986, 607-614. MR 0880363, 10.1002/zamm.19860661211
Reference: [13] I. Hlaváček: Shape optimization of elasto-plastic bodies by the finite element method.Proc. MAFELAP 1987, Academic Press, London.
Reference: [14] Z. Kestřánek: Optimal Shape Design in Elliptic Boundary Value Problems by Finite Element Method.Proc. MAFELAP 1987, Academic Press, London.
Reference: [15] I. Hlaváček: Shape optimization of elasto-plastic bodies obeying Hencky's law.Apl. mat., v. 31, No. 6, 1986. Zbl 0616.73081, MR 0870484
Reference: [16] I. Hlaváček: Shape optimization of an elastic-perfectly plastic body.Apl. mat., v. 32, No. 5, 1987, 381-400. MR 0909545
Reference: [17] B. Fraeijs de Veubeke M. Hogge: Dual analysis for heat conduction problems by finite elements.Int. J. Numer. Meth. Engng., 5, 1972, 65-82. 10.1002/nme.1620050107
Reference: [18] R. Glowinski J. L. Lions R. Trémoliéres: Analyse nurnérique des inéquations variationneles.Dunod, Paris, 1976.
.

Files

Files Size Format View
AplMat_33-1988-4_6.pdf 1.421Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo