Previous |  Up |  Next

Article

Title: Transonic flow calculation via finite elements (English)
Author: Klouček, Petr
Author: Málek, Josef
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 4
Year: 1988
Pages: 296-321
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Using new results based on a convenient entropy condition, two types of algorithms for computing transonic flows are constructed. A sequence of solutions of the linearised problem with a posteriori control is constructed and its convergence to the physical solution of transonic flow in some special situations is proved. This paper contains also numerical results and their analysis for the case of flow past NACA 230012 airfoil. Some numerical improvements of the general algorithms, based on our practical experience with this problem, are also included. (English)
Keyword: finite elements
Keyword: entropy condition
Keyword: transonic flow
Keyword: a posteriori control
Keyword: NACA 230012 airfoil
MSC: 65N30
MSC: 76-08
MSC: 76H05
MSC: 76M99
idZBL: Zbl 0657.76057
idMR: MR0949251
DOI: 10.21136/AM.1988.104311
.
Date available: 2008-05-20T18:35:00Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104311
.
Reference: [1] M. Feistauer J. Nečas: On the solvability of transonic potential flow problems.Zeitschrift für Analysis und ihre Anwendungen, Bd. 4(4) 1985, 305-329. MR 0807140
Reference: [2] J. Mandel J. Nečas: Convergence of finite elements for transonic potential flow.Preprint, Charles University, Prague, May 1986. MR 0909059
Reference: [3] G. Poirier: Traitements numeriques en elements finis de la condition d'entropie des equations transsoniques.These, L'universite et Marie Curie, 1981.
Reference: [4] E. Polak: Computational methods in optimization.Academic Press, New York, 1971. MR 0282511
Reference: [5] R. Glowinski: Numerical methods for nonlinear variational problems.New York, Berlin, Heidelberg, Tokyo, 1984. Zbl 0536.65054, MR 0737005
Reference: [6] J. Nečas I. Hlaváček: Mathematical theory of elastic and elastico-plastic bodies: An introduction.Elsevier North-Holland, Inc., 1981. MR 0600655
.

Files

Files Size Format View
AplMat_33-1988-4_5.pdf 2.876Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo