Previous |  Up |  Next

Article

Title: A study of an operator arising in the theory of circular plates (English)
Author: Herrmann, Leopold
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 5
Year: 1988
Pages: 337-353
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The operator $L_0:D_{L_0}\subset H \rightarrow H$, $L_0u = \frac 1r \frac d {dr} \left\{r \frac d{dr}\left[\frac 1r \frac d{dr}\left(r \frac {du}{dr}\right)\right] \right\}$, $D_{L_0}= \{u \in C^4 ([0,R]), u'(0)=u''''(0)=0, u(R)=u'(R)=0\}$, $H=L_{2,r}(0,R)$ is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on $L_0$ (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types $L_0u=g$ and $u_{tt}+L_0u=g$, respectively. (English)
Keyword: positive definite
Keyword: compact resolvent
Keyword: Fourier method
Keyword: existence theorems
Keyword: static
Keyword: transverse static deflection
Keyword: transverse vibration
Keyword: thin homogeneous elastic plate
Keyword: transverse load
Keyword: dynamic problems
Keyword: circular plates theory
MSC: 34B20
MSC: 35C10
MSC: 47B25
MSC: 47E05
MSC: 73K12
MSC: 74H45
MSC: 74K20
idZBL: Zbl 0658.73037
idMR: MR0961312
DOI: 10.21136/AM.1988.104315
.
Date available: 2008-05-20T18:35:09Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104315
.
Reference: [1] R. A. Adams: Sobolev spaces.Academic Press 1975. Zbl 0314.46030, MR 0450957
Reference: [2] B. M. Budak A. A. Samarskii A. N. Tikhonov: A collection of problems on mathematical physics.International series of monographs in pure and applied mathematics 52, Pergamon Press, Oxford 1964. (Russian: Izd. Nauka, Moscow 1980, 3rd ed.). MR 0592954
Reference: [3] A. Erdélyi, at.: Higher transcendental functions.Vol 2. McGraw Hill 1953.
Reference: [4] W. G. Faris: Self-adjoint operators.Lecture Notes in Mathematics 433, Springer-Verlag 1975. Zbl 0317.47016, MR 0467348
Reference: [5] P. Hartman: Ordinary differential equations.J. Wiley and Sons 1964. Zbl 0125.32102, MR 0171038
Reference: [6] E. Jahnke F. Emde: Tables of functions.Dover Publ. 1945 (4th ed.). MR 0015900
Reference: [7] W. Magnus F. Oberhettinger: Formeln und Sätze für die speziellen Funktionen der mathematischen Physik.Springer-Verlag 1948 (2nd ed.). MR 0025629
Reference: [8] D. E. Mc Farland B. L. Smith W. D. Bernhart: Analysis of plates.Spartan Books 1972.
Reference: [9] S. G. Mikhlin: Linear partial differential equations.(Russian.) Vysš. škola, Moscow 1977. MR 0510535
Reference: [10] S. Timoshenko D. H. Young W. Weaver, Jr.: Vibrations problems in engineering.John Wiley and Sons 1974 (4th ed.). (Russian: Mashinostrojenije, Moscow 1985.)
Reference: [11] S. Timoshenko S. Woinowski-Krieger: Theory of plates and shells.McGraw Hill 1959.
Reference: [12] O. Vejvoda, al.: Partial differential equations: time-periodic solutions.Martinus Nijhoff 1982. Zbl 0501.35001
Reference: [13J G. N. Watson: A treatise on the theory of Bessel functions.Cambridge Univ. Press 1958 (2nd ed.). MR 1349110
Reference: [14] J. Weidmann: Linear operators in Hilbert spaces.Graduate texts in Mathematics 68, Springer-Verlag 1980. Zbl 0434.47001, MR 0566954
.

Files

Files Size Format View
AplMat_33-1988-5_1.pdf 2.594Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo