Title: | Generalized length biased distributions (English) |
Author: | Lingappaiah, Giri S. |
Language: | English |
Journal: | Aplikace matematiky |
ISSN: | 0373-6725 |
Volume: | 33 |
Issue: | 5 |
Year: | 1988 |
Pages: | 354-361 |
Summary lang: | English |
Summary lang: | Russian |
Summary lang: | Czech |
. | |
Category: | math |
. | |
Summary: | Generalized length biased distribution is defined as $h(x)=\phi_r (x)f(x), x>0$, where $f(x)$ is a probability density function, $\phi_r (x)$ is a polynomial of degree $r$, that is, $\phi_r (x)=a_1(x/\mu'_1)+ \ldots + a_r(x^r/\mu'_r)$, with $a_i>0, i=1,\ldots ,r, a_1+\ldots + a_r=1, \mu'_i=E(x^i)$ for $f(x), i=1,2 \ldots, r$. If $r=1$, we have the simple length biased distribution of Gupta and Keating [1]. First, characterizations of exponential, uniform and beta distributions are given in terms of simple length biased distributions. Next, for the case of generalized distribution, the distribution of the sum of $n$ independent variables is put in the closed form when $f(x)$ is exponential. Finally, Bayesian estimates of $a_1, \ldots, a_r$ are obtained for the generalized distribution for general $f(x), x>1$. (English) |
Keyword: | characterizations |
Keyword: | exponential |
Keyword: | uniform |
Keyword: | beta distributions |
Keyword: | length biased distributions |
Keyword: | Bayesian estimates |
MSC: | 62E10 |
MSC: | 62E15 |
MSC: | 62F15 |
idZBL: | Zbl 0665.62016 |
idMR: | MR0961313 |
DOI: | 10.21136/AM.1988.104316 |
. | |
Date available: | 2008-05-20T18:35:12Z |
Last updated: | 2020-07-28 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/104316 |
. | |
Reference: | [1] Ramesh Gupta, Jerome P. Keating: Relations for reliability measures under length biased sampling.Scand. J. Stat. 13 (1986), 49-56. MR 0844034 |
Reference: | [2] G. S. Lingappaiah: On the Dirichlet Variables.J. Stat. Research, 11 (1977), 47-52. MR 0554878 |
Reference: | [3] G. S. Lingappaiah: On the generalized inverted Dirichlet distribution.Demonstratio Math. 9 (1976), 423-433. MR 0428542 |
. |
Files | Size | Format | View |
---|---|---|---|
AplMat_33-1988-5_2.pdf | 851.3Kb | application/pdf |
View/ |