Previous |  Up |  Next

Article

Title: Generalized length biased distributions (English)
Author: Lingappaiah, Giri S.
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 5
Year: 1988
Pages: 354-361
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Generalized length biased distribution is defined as $h(x)=\phi_r (x)f(x), x>0$, where $f(x)$ is a probability density function, $\phi_r (x)$ is a polynomial of degree $r$, that is, $\phi_r (x)=a_1(x/\mu'_1)+ \ldots + a_r(x^r/\mu'_r)$, with $a_i>0, i=1,\ldots ,r, a_1+\ldots + a_r=1, \mu'_i=E(x^i)$ for $f(x), i=1,2 \ldots, r$. If $r=1$, we have the simple length biased distribution of Gupta and Keating [1]. First, characterizations of exponential, uniform and beta distributions are given in terms of simple length biased distributions. Next, for the case of generalized distribution, the distribution of the sum of $n$ independent variables is put in the closed form when $f(x)$ is exponential. Finally, Bayesian estimates of $a_1, \ldots, a_r$ are obtained for the generalized distribution for general $f(x), x>1$. (English)
Keyword: characterizations
Keyword: exponential
Keyword: uniform
Keyword: beta distributions
Keyword: length biased distributions
Keyword: Bayesian estimates
MSC: 62E10
MSC: 62E15
MSC: 62F15
idZBL: Zbl 0665.62016
idMR: MR0961313
DOI: 10.21136/AM.1988.104316
.
Date available: 2008-05-20T18:35:12Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104316
.
Reference: [1] Ramesh Gupta, Jerome P. Keating: Relations for reliability measures under length biased sampling.Scand. J. Stat. 13 (1986), 49-56. MR 0844034
Reference: [2] G. S. Lingappaiah: On the Dirichlet Variables.J. Stat. Research, 11 (1977), 47-52. MR 0554878
Reference: [3] G. S. Lingappaiah: On the generalized inverted Dirichlet distribution.Demonstratio Math. 9 (1976), 423-433. MR 0428542
.

Files

Files Size Format View
AplMat_33-1988-5_2.pdf 851.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo