Previous |  Up |  Next


Title: Shape optimization of elastic axisymmetric bodies (English)
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 3
Year: 1989
Pages: 225,226-245
Summary lang: English
Summary lang: Russian
Summary lang: Czech
Category: math
Summary: The shape of the meridian curve of an elastic body is optimized within a class of Lipschitz functions. Only axisymmetric mixed boundary value problems are considered. Four different cost functionals are used and approximate piecewise linear solutions defined on the basis of a finite element technique. Some convergence and existence results are derived by means of the theory of the appropriate weighted Sobolev spaces. (English)
Keyword: shape of the meridian curve
Keyword: class of Lipschitz functions
Keyword: axisymmetric mixed boundary value problems
Keyword: four different cost functionals
Keyword: approximate piecewise linear solutions
Keyword: finite element technique
Keyword: convergence
Keyword: existence
Keyword: appropriate weighted Sobolev spaces
Keyword: axisymmetric elliptic problems
Keyword: body of revolution
Keyword: elastic equilibrium
MSC: 49A22
MSC: 49A36
MSC: 49J20
MSC: 65N30
MSC: 65N99
MSC: 73k40
MSC: 74P99
MSC: 74S30
MSC: 93B40
idZBL: Zbl 0691.73037
idMR: MR0996898
DOI: 10.21136/AM.1989.104350
Date available: 2008-05-20T18:36:43Z
Last updated: 2020-07-28
Stable URL:


Files Size Format View
AplMat_34-1989-3_4.pdf 2.096Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo