Previous |  Up |  Next

Article

Title: On the generalized Riccati matrix differential equation. Exact, approximate solutions and error estimate (English)
Author: Jódar, Lucas
Author: Navarro, E.
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 6
Year: 1989
Pages: 429-438
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: In this paper explicit expressions for solutions of Cauchy problems and two-point boundary value problems concerned with the generalized Riccati matrix differential equation are given. These explicit expressions are computable in terms of the data and solutions of certain algebraic Riccati equations related to the problem. The interplay between the algebraic and the differential problems is used in order to obtain approximate solutions of the differential problem in terms of those of the algebraic one. (English)
Keyword: Cauchy problem
Keyword: two-point boundary value problem
Keyword: generalized matrix differential equations
Keyword: generalized algebraic Riccati equation
Keyword: error estimates
MSC: 15A06
MSC: 15A24
MSC: 34A05
MSC: 34A45
MSC: 34B99
MSC: 65F30
MSC: 65F99
MSC: 65K10
MSC: 65L05
MSC: 65L10
MSC: 93C15
idZBL: Zbl 0695.65050
idMR: MR1026507
DOI: 10.21136/AM.1989.104373
.
Date available: 2008-05-20T18:37:46Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104373
.
Reference: [1] W. F. Arnold A. Laub: Generalized eigenproblem algorithms and software for algebraic Riccati equations.Proc. of the IEEE, Vol. 72, No. 12 (1984), 1746-1754.
Reference: [2] R. Brockett: Finite Dimensional Linear Systems.John Wiley, New York, 1970. Zbl 0216.27401
Reference: [3] J. Dieudonné: Foundations of Modern Analysis.Academic Press, New York. MR 0349288
Reference: [4] N. Dunford J. Schwartz: Linear Operators, Vol. I.Interscience. New York, 1957.
Reference: [5] J. Eisenfeld: Operator equations and nonlinear eigenparameter problems.J. Functional Analysis, 12 (1973), 475-490. Zbl 0255.47018, MR 0350474, 10.1016/0022-1236(73)90007-4
Reference: [6] G. H. Golub C. F. Van Loan: Matrix Computations.North Oxford Academic, Oxford 1983.
Reference: [7] V. Hernández L. Jódar: Sobre la ecuación cuadrática en operadores $A + BT + TC + TDT=0.Stochastica. Vol. VII, no 2 (1983), 145-154. MR 0766697
Reference: [8] V. Hernández L. Jódar: Boundary problems and periodic Riccati equations.IEEE Trans. Autom. Control, Vol. AC-30, No. 11 (1985), 1131-1133. MR 0810316, 10.1109/TAC.1985.1103831
Reference: [9] L. Jódar: Boundary problems for Riccati and Lyapunov equations.Proc. Edinburgh Math. Soc. 29 (1986), 15-21. MR 0829176
Reference: [10] L. Jódar: Explicit solutions for Sturm Liouville operator problems.Proc. Edinburg Math. Soc., 30(1987), 301-309. MR 0892699
Reference: [11] L. Jódar: Boundary value problems for second order operator differential equations.Linear Algebra and its Appls., 83 (1986), 29-38. MR 0862730
Reference: [12] L. Jódar: Boundary value problems and Cauchy problems for the second order Euler operator differential equation.Linear Algebra and its Appls., 91 (1987), 1-14. MR 0888475
Reference: [13] H. Kuiper: Generalized Operator Riccati equations.SIAM J. Math. Anal., Vol. 16 (1985), 675-694. Zbl 0577.34053, MR 0793914, 10.1137/0516051
Reference: [14] K. Martensson: On the matrix Riccati equation.Inf. Sci. 3 (1971), 17-49. Zbl 0206.45602, MR 0280512, 10.1016/S0020-0255(71)80020-8
Reference: [15] G. G. L. Meyer H. J. Payne: An iterative method of solution of the algebraic Riccati equation.IEEE Trans. Aut. Control, (1972). MR 0451679
Reference: [16] J. D. Roberts: Linear Model Reduction and solution of the algebraic Riccati equation by use of the sign function.Int. J. Control, Vol. 32, No. 4 (1980), 677-687. Zbl 0463.93050, MR 0595962, 10.1080/00207178008922881
.

Files

Files Size Format View
AplMat_34-1989-6_2.pdf 1.494Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo