Previous |  Up |  Next

Article

Title: Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space (English)
Author: Slodička, Marián
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 6
Year: 1989
Pages: 439-448
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The Rothe-Galerkin method is used for discretization. The rate of convergence in $C(I, L_p(G))$ for the approximate solution of a quasilinear parabolic equation with a Volterra operator on the right-hand side is established. (English)
Keyword: error estimate
Keyword: Rothe’s method
Keyword: semidiscretization in time
Keyword: quasilinear parabolic Volterra integro-differential equation
Keyword: rate of convergence
Keyword: galerkin's method
MSC: 35K22
MSC: 45K05
MSC: 45L05
MSC: 49K22
MSC: 65M15
MSC: 65M20
MSC: 65R20
idZBL: Zbl 0695.65087
idMR: MR1026508
DOI: 10.21136/AM.1989.104374
.
Date available: 2008-05-20T18:37:49Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104374
.
Reference: [1] P. G. Ciarlet: The finite element method for elliptic problems.North. Holland, Amsterdam 1978. Zbl 0383.65058, MR 0520174
Reference: [2] J. Descloux: Basic properties of Sobolev spaces, approximation by finite elements.Ecole polytechnique féderale Lausanne, Switzerland 1975.
Reference: [3] G. Di Blasio: Linear parabolic evolution equations in $L_p$-spaces.Ann. Mat. Рurа Appl. 138 (1984), 55-104. MR 0779538, 10.1007/BF01762539
Reference: [4] R. Glowinski J. L. Lions R. Tremolieres: Analyse numerique des inequations variationelles.Dunod, Paris 1976.
Reference: [5] D. Henry: Geometric theory of semilinear parabolic equations.Springer-Verlag, Berlin - Heidelberg-New York 1981. Zbl 0456.35001, MR 0610244
Reference: [6] J. Kačur: Application of Rothe's method to evolution integrodifferential equations.Universität Heidelberg, SFB 123, 381, 1986.
Reference: [7] J. Kačur: Method or Rothe in evolution equations.Teubner Texte zur Mathematik 80, Leipzig 1985. MR 0834176
Reference: [8] A. Kufner O. John S. Fučík: Function spaces.Academia, Prague 1977. MR 0482102
Reference: [9] M. Marino A. Maugeri: $L_p$-theory and partial Hölder continuity for quasilinear parabolic systems of higher order with strictly controlled growth.Ann. Mat. Рurа Appl. 139 (1985), 107-145. MR 0798171, 10.1007/BF01766852
Reference: [10] V. Pluschke: Local solution of parabolic equations with strongly increasing nonlinearity by the Rothe method.(to appear in Czechoslovak. Math. J.). Zbl 0671.35037, MR 0962908
Reference: [11] K. Rektorys: The method of discretization in time and and partial differential equations.D. Reidel. Publ. Do., Dordrecht-Boston-London 1982. MR 0689712
Reference: [12] Ch. G. Simander: On Dirichlet's boundary value problem.Lecture Notes in Math. 268, Springer-Verlag, Berlin-Heidelberg-New York 1972.
Reference: [13] M. Slodička: An investigation of convergence and error estimate of approximate solution for quasiliriear integrodifferential equation.(to appear).
Reference: [14] W. von Wahl: The equation $u' + A(t) u = f$ in a Hilbert space and $L_p$-estimates for parabolic equations.J. London Math. Soc. 25 (1982), 483 - 497. Zbl 0493.35050, MR 0657505, 10.1112/jlms/s2-25.3.483
Reference: [15] V. Thomee: Galerkin finite element method for parabolic problems.Lecture Notes in Math. 1054, Springer-Verlag, Berlin -Heidelberg-New York-Tokyo 1984. MR 0744045
Reference: [16] M. F. Wheeler: A priori $L_2$-error estimates for Galerkin approximations to parabolic partial differential equations.SIAM. J. Numer. Anal. 10 (1973), 723 - 759. MR 0351124, 10.1137/0710062
.

Files

Files Size Format View
AplMat_34-1989-6_3.pdf 1.471Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo