Previous |  Up |  Next

Article

Title: An investigation of convergence and error estimate of approximate solution for a quasilinear parabolic integrodifferential equation (English)
Author: Slodička, Marián
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 35
Issue: 1
Year: 1990
Pages: 16-27
Summary lang: English
.
Category: math
.
Summary: One parabolic integrodifferential problem in the abstract real Hilbert spaces is studied in this paper. The semidiscrete and full discrete approximate solution is defined and the error estimate of Rothe's function in some function spaces is established. (English)
Keyword: Rothe's method
Keyword: Galerkin's method
Keyword: error estimates
Keyword: convergence
Keyword: quasilinear parabolic integrodifferential problem
Keyword: abstract real Hilbert space
MSC: 35K22
MSC: 45G10
MSC: 45K05
MSC: 45L05
MSC: 45N05
MSC: 65M15
MSC: 65M20
MSC: 65R20
idZBL: Zbl 0725.65138
idMR: MR1039408
DOI: 10.21136/AM.1990.104384
.
Date available: 2008-05-20T18:38:15Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104384
.
Reference: [1] P. G. Ciarlet: The finite element method for elliptic problems.North Holland, Amsterdam 1978. Zbl 0383.65058, MR 0520174
Reference: [2] J. Douglas T. Dupont M. F. Wheeler: A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations.Math. Соmр. 32 (1978), 345-362. MR 0495012
Reference: [3] R. Glowinski J. L. Lions R. Tremolieres: Analyse numerique des inequations variationelles.Dunod, Paris 1976.
Reference: [4] J. Kačur: Application of Rothe's method to evolution integrodifferential equations.J. reine angew. Math. 388 (1988), 73-105. Zbl 0638.65098, MR 0944184
Reference: [5] J. Kačur: Method of Rothe in evolution equations.Teubner Texte zur Mathematik 80, Leipzig 1985. MR 0834176
Reference: [6] J. Kačur A. Ženíšek: Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems.Apl. mat. 31 (1986), 190-223. MR 0837733
Reference: [7] A. Kufner O. John S. Fučík: Function spaces.Academia, Prague 1977. MR 0482102
Reference: [8] J. T. Oden J. N. Reddy: An introduction to the mathematical theory of finite elements.J. Wiley & sons, New York- London- Sydney 1976. MR 0461950
Reference: [9] V. Pluschke: Local solution of parabolic equations with strongly increasing nonlinearity by the Rothe method.(to appear in Czech. Math. J.). Zbl 0671.35037, MR 0962908
Reference: [10] K. Rektorys : The method of discretization in time and partial differential equations.D. Reidel Publ. Co., Dordrecht - Boston- London 1982. Zbl 0522.65059, MR 0689712
Reference: [11] А. А. Самарский: Теория разностных схем.Наука. Москва 1977. Zbl 1155.81371
Reference: [12] M. Slodička: Application of Rothe's method to evolution integrodifferential systems.CMUC 30, 1 (1989), 57-70. Zbl 0674.65110, MR 0995701
Reference: [13] M. Slodička: О слабом решении одной системы квазилинейных интегродифференциальных эволюционных уравнений.ОИЯИ. Р5-87-765, Дубна 1987.
Reference: [14] G. Strong G. J. Fix: An analysis of the finite element method.Prentice-Hall, Englewood Cliffs, N. J. 1973. MR 0443377
Reference: [15] V. Thomee: Galerkin finite element methods for parabolic problems.Lecture Notes in Math. 1054, Springer-Verlag, Berlin- Heidelberg- New York- Tokyo 1984. Zbl 0528.65052, MR 0744045
Reference: [16] M. F. Wheeler: A priori $L_2$-error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723 - 759. MR 0351124, 10.1137/0710062
Reference: [17] M. Zlámal: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields.Math. of Соmр. 41 (1983), 425-440. MR 0717694
.

Files

Files Size Format View
AplMat_35-1990-1_2.pdf 1.292Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo