Title:
|
Discrete smoothing splines and digital filtration. Theory and applications (English) |
Author:
|
Hřebíček, Jiří |
Author:
|
Šik, František |
Author:
|
Veselý, Vítězslav |
Language:
|
English |
Journal:
|
Aplikace matematiky |
ISSN:
|
0373-6725 |
Volume:
|
35 |
Issue:
|
1 |
Year:
|
1990 |
Pages:
|
28-50 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Two universally applicable smoothing operations adjustable to meet the specific properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing digital convolution filters. The first operation is related to the data vector $r={(r_0,..., r_{n-1})}^T$ with respect to the operations $\Cal{A}$, $\Cal{L}$ and to the smoothing parameter $\alpha$. The resulting function is denoted by $\sigma_\alpha(t)$. The measured sample $r$ is defined on an equally spaced mesh $\Delta=\{t_i=ih\}^{n-1}_{i=0}$ $T=nh$. The smoothed data vector $y$ is then $y=\{\sigma_\alpha(t_i)\}^{n-1}_{i=0}$. The other operation gives $y\in E^n$ computed by $\bold {y=h*r}$, where $\bold *$ stands for the discrete convolution, the running weighted mean by $h$. The main aims of the present contribution: to prove the existence of close interconnection between the two smoothing approaches (Cor. 2.6 and [11]), to develop the transfer function, which characterizes the smoothing spline as a filter in terms of $\alpha$ and $\lambda_{ik}$ (the eigenvalues of the discrete analogue of $Cal {L}$) (Th. 2.5), to develop the reduction ratio between the original and the smoothed data in the same terms (Th. 3.1). (English) |
Keyword:
|
discrete smoothing spline CDS-spline |
Keyword:
|
smoothing parameter |
Keyword:
|
digital convolution filter |
Keyword:
|
transfer function |
Keyword:
|
sinusoidal wave |
Keyword:
|
saw-like waves |
Keyword:
|
rectangular pulse train |
MSC:
|
41A15 |
MSC:
|
65D07 |
MSC:
|
65D10 |
MSC:
|
65K10 |
MSC:
|
93E11 |
MSC:
|
93E14 |
idZBL:
|
Zbl 0704.65005 |
idMR:
|
MR1039409 |
DOI:
|
10.21136/AM.1990.104385 |
. |
Date available:
|
2008-05-20T18:38:18Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/104385 |
. |
Reference:
|
[1] P. M. Anselone P.-J. Laurent: A general method for the construction of interpolating or smoothing spline functions.Num. Math. 12 (1968) No. 1, 66-82. MR 0249904, 10.1007/BF02170998 |
Reference:
|
[2] P. Bečička J. Hřebíček F. Šik: Numerical analysis of smoothing splines.(Czech). Proceed. 9-th Symposium on Algorithms ALGORITMY 87, JSMF, Bratislava. 1987, 22-24. |
Reference:
|
[3] K. Böhmer: Spline-Funktionen.Teubner, Stuttgart, 1974. MR 0613676 |
Reference:
|
[4] E. O. Brigham: The Fast Fourier Transform.Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974. Zbl 0375.65052 |
Reference:
|
[5] C. S. Burrus T. W. Parks: DFT/FFT and Convolution Algorithms.Wiley Interscience, 1985. |
Reference:
|
[6] P. Craven G. Wahba: Smoothing Noisy Data with Spline Functions.Numer. Math. 31 (1979), 377-403. MR 0516581, 10.1007/BF01404567 |
Reference:
|
[7] D. F. Elliot K. R. Rao: Fast transforms. Algorithms, Analyses, Applications.Acad. Press, New York, London, 1982. MR 0696936 |
Reference:
|
[8] W. Gautschi: Attenuation Factors in Practical Fourier Analysis.Num. Math. 18 (1972), 373-400. Zbl 0231.65101, MR 0305641, 10.1007/BF01406676 |
Reference:
|
[9] M. H. Gutknecht: Attenuation factors in multivariate Fourier analysis.Num. Math. 51 (1987), 615-629. Zbl 0639.65079, MR 0914342, 10.1007/BF01400173 |
Reference:
|
[10] J. Hřebíček F. Šik V. Veselý: Digital convolution filters and smoothing splines.Proceed. 2nd ISNA (I. Marek, ed.), Prague 1987, Teubner, Leipzig, 1988, 187-193. MR 1171704 |
Reference:
|
[11] J. Hřebíček F. Šik V. Veselý: How to choose the smoothing parameter of a periodic smoothing spline.(to appear). |
Reference:
|
[12] J. Hřebíček F. Šik P. Švenda V. Veselý: Smoothing splines and digital filtration.Research Report, Czechoslovak Academy of Sciences, Institute of Physical Metallurgy, Brno, 1987. |
Reference:
|
[13] L. V. Kantorovič V. I. Krylov: Approximate methods of higher analysis.(in Russian). 4. ed. Moskva, 1952. MR 0106537 |
Reference:
|
[14] P. J. Laurent: Approximation et Optimisation.Hermann, Paris, 1972. Zbl 0238.90058, MR 0467080 |
Reference:
|
[15] F. Locher: Interpolation on uniform meshes by the translates of one function and related attenuation factors.Math. Comput. 37 (1981) No. 156, 403 - 416. Zbl 0517.42004, MR 0628704, 10.1090/S0025-5718-1981-0628704-2 |
Reference:
|
[16] M. Marcus H. Minc: A survey of matrix theory and matrix inequalities.Boston 1964 (Russian translation, Nauka, Moskva, 1972). MR 0349699 |
Reference:
|
[17] H. J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms.2nd ed., Springer, Berlin, Heidelberg, New York, 1982. MR 0606376 |
Reference:
|
[18] V. A. Vasilenko: Spline-Functions: Theory, Algorithms, Programs.(in Russian). Nauka, Novosibirsk, 1983. Zbl 0529.41013, MR 0721970 |
Reference:
|
[19] J. Hřebíček F. Šik V. Veselý: Smoothing by discrete splines and digital convolution filters.(Czech). Proceed Conf. Numer. Methods in the Physical Metallurgy (J. Hřebíček, ed.) Blansko 1988, ÚFM ČSAV Brno 1988, 62-70. |
. |