Previous |  Up |  Next

Article

Title: Constrained optimization: A general tolerance approach (English)
Author: Roubíček, Tomáš
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 35
Issue: 2
Year: 1990
Pages: 99-128
Summary lang: English
.
Category: math
.
Summary: To overcome the somewhat artificial difficulties in classical optimization theory concerning the existence and stability of minimizers, a new setting of constrained optimization problems (called problems with tolerance) is proposed using given proximity structures to define the neighbourhoods of sets. The infimum and the so-called minimizing filter are then defined by means of level sets created by these neighbourhoods, which also reflects the engineering approach to constrained optimization problems. Moreover, an appropriate concept of convergence of filters is developed, and stability of the minimizing filter as well as its approximation by the exterior penalty function technique are proved by using a compactification of the problem. (English)
Keyword: constrained optimization
Keyword: level sets
Keyword: minimizing sequences
Keyword: penalty functions
Keyword: compactifications
Keyword: problems with tolerance
MSC: 49A27
MSC: 49J27
MSC: 49J45
MSC: 49K40
MSC: 49M30
MSC: 54D35
MSC: 54E05
MSC: 65K10
MSC: 90C48
MSC: 90C99
idZBL: Zbl 0714.49006
idMR: MR1042847
DOI: 10.21136/AM.1990.104393
.
Date available: 2008-05-20T18:38:41Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104393
.
Reference: [1] Á. Császár: General Topology.Akademiai Kiadó, Budapest, 1978. MR 1796928
Reference: [2] A. V. Efremovich: The geometry of proximity.(in Russian). Mat. Sbornik 31 (73) (1952), 189-200. MR 0055659
Reference: [3] E. K. Golshtein: Duality Theory in Mathematical Programming and Its Applications.(in Russian). Nauka, Moscow, 1971. MR 0322531
Reference: [4] D. A. Molodcov: Stability and regularization of principles of optimality.(in Russian). Zurnal vycisl. mat. i mat. fiziki 20 (1980), 1117-1129. MR 0593496
Reference: [5] D. A. Molodcov: Stability of Principles of Optimality.(in Russian). Nauka, Moscow, 1987.
Reference: [6] L. Nachbin: Topology and Order.D. van Nostrand Соmр., Princeton, 1965. Zbl 0131.37903, MR 0219042
Reference: [7] S. A. Naimpally B. D. Warrack: Proximity Spaces.Cambridge Univ. Press, Cambridge, 1970. MR 0278261
Reference: [8] E. Polak Y. Y. Wardi: A study of minizing sequences.SIAM J. Control Optim. 22 (1984), 599-609. MR 0747971, 10.1137/0322036
Reference: [9] T. Roubíček: A generalized solution of a nonconvex minimization problem and its stability.Kybernetika 22 (1986), 289-298. MR 0868022
Reference: [10] T. Roubíček: Generalized solutions of constrained optimization problems.SIAM J. Control Optim. 24 (1986), 951-960. MR 0854064, 10.1137/0324056
Reference: [11] T. Roubíček: Stable extensions of constrained optimization problems.J. Math. Anal. Appl. 141 (1989), 520-135, MR 1004588, 10.1016/0022-247X(89)90210-2
Reference: [12] Yu. M. Smirnov: On proximity spaces.(in Russian). Mat. Sbornik 31 (73) (1952), 534-574. Zbl 0152.20904, MR 0055661
Reference: [13] J. Warga: Optimal Control of Differential and Functional Equations.Academic press, New York, 1972. Zbl 0253.49001, MR 0372708
.

Files

Files Size Format View
AplMat_35-1990-2_2.pdf 4.069Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo