Previous |  Up |  Next

Article

Title: Cayley's problem (English)
Author: Petek, Peter
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 35
Issue: 2
Year: 1990
Pages: 140-146
Summary lang: English
.
Category: math
.
Summary: Newton's method for computation of a square root yields a difference equation which can be solved using the hyperbolic cotangent function. For the computation of the third root Newton's sequence presents a harder problem, which already Cayley was trying to solve. In the present paper two mutually inverse functions are defined in order to solve the difference equation, instead of the hyperbolic cotangent and its inverse. Several coefficients in the expansion around the fixed points are obtained, and the expansions are glued together in the region of overlapping. (English)
Keyword: Newton method
Keyword: difference equation
Keyword: series expansion
Keyword: fixed point
Keyword: discrete dynamical system
Keyword: Julia set
Keyword: Cayley’s problem
Keyword: recurrence relations
Keyword: analytic solution
MSC: 39A10
MSC: 58C30
MSC: 58F08
MSC: 65H05
MSC: 65Q05
idZBL: Zbl 0709.39001
idMR: MR1042849
DOI: 10.21136/AM.1990.104395
.
Date available: 2008-05-20T18:38:47Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104395
.
Reference: [1] A. Cayley: The Newton-Fourier imaginary problem.Amer. J. Math. II, 97 (1879).
Reference: [2] P. Petek: A Nonconverging Newton Sequence.Math. Magazine 56, no. 1, 43 - 45 (1983). Zbl 0505.10006, MR 0692174, 10.1080/0025570X.1983.11977016
Reference: [3] G. Julia: Sur l'iteration des fonctions rationnelles.Journal de Math. Pure et Appl. 8, 47-245 (1918).
Reference: [4] P. Fatou: Sur les equations fonctionelles.Bull. Soc. Math. France, 47: 161 - 271, 48: 33 - 94, 208-314 (1919). MR 1504787, 10.24033/bsmf.998
Reference: [5] H. O. Peitgen D. Saupe F. Haeseler: Cayley's Problem and Julia Sets.Math. Intelligencer 6: 11-20 (1984). MR 0738904, 10.1007/BF03024150
Reference: [6] P. Blanchard: Complex Analytic Dynamics on the Riemann Sphere.Bull. Amer. Math. Soc. 11, 85-141 (1984). Zbl 0558.58017, MR 0741725, 10.1090/S0273-0979-1984-15240-6
Reference: [7] C. L. Siegel: Iteration of Analytic Functions.Annals of Mathematics 43, 607-612 (1942). Zbl 0061.14904, MR 0007044, 10.2307/1968952
Reference: [8] H. O. Peitgen P. H. Richter: The Beauty of Fractals.Springer-Verlag, Berlin, Heidelberg 1986. MR 0852695
.

Files

Files Size Format View
AplMat_35-1990-2_4.pdf 1.125Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo