Previous |  Up |  Next


linear systems; interval arithmetic; interval solution; interval matrix; interval vector
It is shown that if the concept of an interval solution to a system of linear interval equations given by Ratschek and Sauer is slightly modified, then only two nonlinear equations are to be solved to find a modified interval solution or to verify that no such solution exists.
[1] W. Barth E. Nuding: Optimale Lösung von Intervallgleichungssystemen. Computing 12 (1974), 117-125. DOI 10.1007/BF02260368 | MR 0398075
[2] H. Beeck: Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen. in: Interval Mathematics (K. Nickel, Ed.). Lecture Notes, Springer 1975, 150-159. DOI 10.1007/3-540-07170-9_12 | Zbl 0303.65025
[3] E. Hansen: On Linear Algebraic Equations with Interval Coefficients. in: Topics in Interval Analysis (E. Hansen, Ed.). Clarendon Press, Oxford 1969.
[4] R. E. Moore: Interval Analysis. Prentice-Hall, Englewood Cliffs 1966. MR 0231516 | Zbl 0176.13301
[5] K. Nickel: Die Auflösbarkeit linearer Kreisscheiben- und Intervall-Gleichungssysteme. Freiburger Intervall-Berichte 81/3, 11 - 46. Zbl 0483.65019
[6] W. Oettli W. Prager: Compatibility of Approximate Solution of Linear Equations with Given Error Bounds for Coefficients and Right-Hand Sides. Numerische Mathematik 6 (1964), 405-409. DOI 10.1007/BF01386090 | MR 0168106
[7] H. Ratschek W. Sauer: Linear Interval Equations. Computing 28 (1982), 105-115. DOI 10.1007/BF02241817 | MR 0653366
[8] J. Rohn: Some Results on Interval Linear Systems. Freiburger Intervall-Berichte 85/4, 93-116.
[9] J. Rohn: A Note on Solving Equations of Турe $A^1 x^1 = b^1$. Freiburger Intervall-Berichte 86/4, 29-31.
Partner of
EuDML logo