Previous |  Up |  Next

Article

Title: Monotone operators. A survey directed to applications to differential equations (English)
Author: Franců, Jan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 35
Issue: 4
Year: 1990
Pages: 257-301
Summary lang: English
.
Category: math
.
Summary: The paper deals with the existence of solutions of the form $Au=b$ with operators monotone in a broader sense, including pseudomonotone operators and operators satisfying conditions $S$ and $M$. The first part of the paper which has a methodical character is concluded by the proof of an existence theorem for the equation on a reflexive separable Banach space with a bounded demicontinuous coercive operator satisfying condition $(M)_0$. The second part which has a character of a survey compares various types of continuity and monotony and introduces further results. Application of this theory to proofs of existence theorems for boundary value problems for ordinary and partial differential equations is illustrated by examples. (English)
Keyword: monotone
Keyword: pseudomonotone operators
Keyword: operators satisfying $S$, $M$ conditions
Keyword: existence theorems for boundary value problems for differential equations
MSC: 35-02
MSC: 35A05
MSC: 35A25
MSC: 35F30
MSC: 47H05
MSC: 47H15
MSC: 65J15
idZBL: Zbl 0724.47025
idMR: MR1065003
DOI: 10.21136/AM.1990.104411
.
Date available: 2008-05-20T18:39:31Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104411
.
Reference: [1] K. Deimling: Nonlinear functional analysis.Springer 1985. Zbl 0559.47040, MR 0787404
Reference: [2] P. Doktor: Modern methods of solving partial differential equations.(Czech), Lecture Notes, SPN, Prague, 1976.
Reference: [3] S. Fučík: Solvability of nonlinear equations and boundary value problems.D. Reidel Publ. Соmр., Dordrecht; JČSMF, Prague, 1980. MR 0620638
Reference: [4] S. Fučík A. Kufner: Nonlinear differential equations;.Czech edition - SNTL, Prague 1978; English translation - Elsevier, Amsterdam 1980. MR 0558764
Reference: [5] S. Fučík J. Milota: Mathematical analysis II.(Czech), Lecture Notes, SPN, Prague 1980.
Reference: [6] S. Fučík J. Nečas J. Souček V. Souček: Spectral analysis of nonlinear operators.Lecture Notes in Math. 346, Springer, Berlin 1973; JCSMF, Prague 1973. MR 0467421
Reference: [7] R. I. Kačurovskij: Nonlinear monotone operators in Banach spaces.(Russian), Uspechi Mat. Nauk 23 (1968), 2, 121-168. MR 0226455
Reference: [8] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press, New York 1980; Russian translation - Mir, Moscow 1983. MR 0738631
Reference: [9] A. N. Kolmogorov S. V. Fomin: Introductory real analysis.(Russian), Moscow 1954, English translation - Prentice Hall, New York 1970, Czech translation - SNTL, Prague 1975. MR 0267052
Reference: [10] A. Kufner O. John S. Fučík: Function spaces.Academia, Prague 1977. MR 0482102
Reference: [11] J. Nečas: Introduction to the theory of nonlinear elliptic equations.Teubner-Texte zur Math. 52, Leipzig, 1983. MR 0731261
Reference: [12] D. Pascali S. Sburlan: Nonlinear mappings of monotone type.Editura Academiei, Bucuresti 1978. MR 0531036
Reference: [13] A. Pultr: Subspaces of Euclidean spaces.(Czech), Matematický seminář - 22, SNTL, Prague 1987.
Reference: [14] E. Zeidler: Lectures on nonlinear functional analysis II - Monotone operators.(German), Teubner-Texte zur Math. 9, Leipzig 1977; Revised extended English translation: Nonlinear functional analysis and its application II, Springer, New York (to appear). MR 0628004
Reference: [15] J. Nečas: Nonlinear elliptic equations.(French), Czech. Math. J. 19 (1969), 252-274.
Reference: [16] M. Feistauer A. Ženíšek: Compactness method in the finite element theory of nonlinear elliptic problems.Numer. Math. 52 (1988), 147-163. MR 0923708, 10.1007/BF01398687
.

Files

Files Size Format View
AplMat_35-1990-4_1.pdf 4.821Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo