Previous |  Up |  Next

Article

Title: Von Kármán equations. III. Solvability of the von Kármán equations with conditions for geometry of the boundary of the domain (English)
Author: Cibula, Július
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 5
Year: 1991
Pages: 368-379
Summary lang: English
.
Category: math
.
Summary: Solvability of the general boundary value problem for von Kármán system of nonlinear equations is studied. The problem is reduced to an operator equation. It is shown that the corresponding functional of energy is coercive and weakly lower semicontinuous. Then the functional of energy attains absolute minimum which is a variational solution of the problem. (English)
Keyword: variational solution
Keyword: Sobolev space
Keyword: linear continuous functional
Keyword: operator, curvature
Keyword: property of coerciveness
Keyword: weakly lower semicontinuous functional
Keyword: absolute minimum
Keyword: functional of energy
MSC: 35D05
MSC: 35G30
MSC: 35Q99
MSC: 73C50
MSC: 73K10
MSC: 74B20
MSC: 74K20
MSC: 74P10
MSC: 74S30
idZBL: Zbl 0754.73035
idMR: MR1125638
DOI: 10.21136/AM.1991.104473
.
Date available: 2008-05-20T18:42:16Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104473
.
Reference: [1] J. Cibula: Equations de von Kármán. I. Résultat d'existence pour les problèmes aux limites non homogènes.Aplikace matematiky, 29 (1984), 317-332. Zbl 0575.35034, MR 0772267
Reference: [2] J. Cibula: Equations de von Kármán. II. Approximation de la solution.Aplikace matematiky, 30(1985), 1-10. Zbl 0606.35031, MR 0779329
Reference: [3] J. Céa: Optimisation, théorie et algoritmes.Dunod, Paris 1971. MR 0298892
Reference: [4] P. G. Ciarlet P. Rabier: Lés équations de von Kármán.Lecture Notes in Math., vol. 826. Springer-Verlag, Berlin-Heidelberg-New York 1980. MR 0595326
Reference: [5] I. Hlaváček J. Naumann: Inhomogeneous boundary value problems for the von Kármán equation, I.Aplikace matematiky 19 (1974), 253-269. MR 0377307
Reference: [6] O. John J. Nečas: On the solvability of von Kármán equations.Aplikace matematiky, 20 (1975), 48-62. MR 0380099
Reference: [7] G. H. Knightly: An existence theorem for the von Kármán equations.Arch. Rat. Mech. Anal., 27 (1967), 233-242. Zbl 0162.56303, MR 0220472, 10.1007/BF00290614
Reference: [8] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
.

Files

Files Size Format View
AplMat_36-1991-5_3.pdf 1.287Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo