Previous |  Up |  Next

Article

Title: Bifurcation of heteroclinic orbits for diffeomorphisms (English)
Author: Fečkan, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 5
Year: 1991
Pages: 355-367
Summary lang: English
.
Category: math
.
Summary: The paper deals with the bifurcation phenomena of heteroclinic orbits for diffeomorphisms. The existence of a Melnikov-like function for the two-dimensional case is shown. Simple possibilities of the set of heteroclinic points are described for higherdimensional cases. (English)
Keyword: bifurcation phenomena
Keyword: heteroclinic points
Keyword: discrete dynamical systems
Keyword: dynamical system
Keyword: diffeomorphism
MSC: 34C37
MSC: 37G99
MSC: 58F14
MSC: 58f30
idZBL: Zbl 0748.58022
idMR: MR1125637
DOI: 10.21136/AM.1991.104472
.
Date available: 2008-05-20T18:42:13Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104472
.
Reference: [1] M. Medveď: Dynamical Systems.(Slovak). Veda, Bratislava 1988. MR 0982929
Reference: [2] S. Smale: Differentiable dynamical systems.Bull. Amer. Math. Soc. V. 73 (1967), 747- 817. Zbl 0202.55202, MR 0228014, 10.1090/S0002-9904-1967-11798-1
Reference: [3] V. K. Melnikov: On the stability of the center for the time periodic solutions.Trans. Moscow Math. Soc. V. 12 (1963), 3-56. MR 0156048
Reference: [4] K. J. Palmer: Exponential dichotomies and transversal homoclinic points.J. Diff. Equations V. 55 (1984), 225-256. Zbl 0508.58035, MR 0764125, 10.1016/0022-0396(84)90082-2
Reference: [5] M. Golubitsky V. Guillemin: Stable Mappings and their Singularities.Springer-Verlag, New York, Heidelberg, Berlin, 1973, Mir Moskva, 1977. MR 0467801
Reference: [6] D. Henry: Geometric Theory of Semilinear Parabolic Equations.LNM 840, Springer-Verlag, New York, Berlin, 1981. Zbl 0456.35001, MR 0610244
Reference: [7] Z. Nitecki: Differentiable Dynamics.The MIT Press, Cambridge, Massachusetts, London, 1971. Mir, Moskva, 1975. Zbl 0246.58012, MR 0649788
Reference: [8] S. N. Chow J. K. Hale J. Mallet-Paret: An example of bifurcation to homoclinic orbits.J. Differ. Equations V. 37 (1980), 351-373. MR 0589997, 10.1016/0022-0396(80)90104-7
Reference: [9] Th. Bröcker L. Lander: Differentiable Germs and Catastrophes.Cambridge Univ. Press, Cambridge, 1975, Mir. Moskva, 1977. MR 0494220
Reference: [10] S. N. Chow J. K. Hale: Methods of Bifurcation Theory.Springer-Verlag, New York, Berlin, Heidelberg, 1982. MR 0660633
.

Files

Files Size Format View
AplMat_36-1991-5_2.pdf 1.606Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo