[1] S. Agmon A. Douglis L. Nirenberg: 
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17 (1964), 35-92. 
DOI 10.1002/cpa.3160170104 | 
MR 0162050[2] A. Friedman: 
Partial differential equations of parabolic type. Prentice-Hall, INC (1964). 
MR 0181836 | 
Zbl 0144.34903[3] A. Kufner O. John S. Fučík: 
Function spaces. Praha, Academia (1977). 
MR 0482102[4] O. A. Ladzhenskaya V. A. Solonnikov N. N. Uralceva: Linear and quasilinear equations of parabolic type. (Russian). Moskva, Nauka (1967).
[5] J. L. Lions: 
Quelques méthodes des résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). 
MR 0259693[6] A. Matsumura T. Nishida: 
Initial boundary value problems for the equation of motion of compressible viscous and heat conductive fluids. Comm. Math. Phys. 89 (1983), 445 - 464. 
DOI 10.1007/BF01214738 | 
MR 0713680[7] A. Matsumura T. Nishida: 
The initial value problem for the equations of motion of viscous and heat conductive gasses. J. Math. Kyoto Univ. 20 (1980), 67-104. 
DOI 10.1215/kjm/1250522322 | 
MR 0564670[8] S. Mizohata: Theory of partial differential equations. (Russian). Moskva, Mir (1977).
[9] J. Nečas A. Novotný M. Šilhavý: 
Global solution to the compressible isothermal multipolar fluid. to appear J. Math. Anal. Appl. (1991). 
MR 1135273[10] J. Nečas M. Šilhavý: 
Multipolar viscous fluids. to appear Quart. Appl. Math. 
MR 1106391[11] J. Neustupa: 
The global weak solvability of a regularized system of the Navier-Stokes equations for compressible fluid. Apl. Mat. 33 (1988), 389-409. 
MR 0961316[12] J. Neustupa A. Novotný: Uniqueness to the regularized viscous compressible heat conductive flow. to appear.
[14] R. Rautman: 
The uniqueness and regularity of the solutions of Navier-Stokes problems. Lecture Notes in Math. Vol. 561, Springer-Verlag (1976). 
DOI 10.1007/BFb0087652 | 
MR 0463727[16] R. Temam: 
Navier-Stokes equations. Amsterdam-New York-Oxford (1979). 
Zbl 0454.35073