Previous |  Up |  Next

Article

Title: Global weak solvability to the regularized viscous compressible heat conductive flow (English)
Author: Neustupa, Jiří
Author: Novotný, Antonín
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 6
Year: 1991
Pages: 417-431
Summary lang: English
.
Category: math
.
Summary: The concept of regularization to the complete system of Navier-Stokes equations for viscous compressible heat conductive fluid is developed. The existence of weak solutions for the initial boundary value problem for the modified equations is proved. Some energy and etropy estimates independent of the parameter of regularization are derived. (English)
Keyword: compressible heat conductive fluid
Keyword: global existence
Keyword: initial or boundary value problems
Keyword: energ inequality
Keyword: regularization
Keyword: Navier-Stokes equations
Keyword: weak solutions
Keyword: energy and entropy estimates
MSC: 35Q30
MSC: 76N10
idZBL: Zbl 0742.76063
idMR: MR1134919
DOI: 10.21136/AM.1991.104479
.
Date available: 2008-05-20T18:42:31Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104479
.
Reference: [1] S. Agmon A. Douglis L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II.Comm. Pure Appl. Math. 17 (1964), 35-92. MR 0162050, 10.1002/cpa.3160170104
Reference: [2] A. Friedman: Partial differential equations of parabolic type.Prentice-Hall, INC (1964). Zbl 0144.34903, MR 0181836
Reference: [3] A. Kufner O. John S. Fučík: Function spaces.Praha, Academia (1977). MR 0482102
Reference: [4] O. A. Ladzhenskaya V. A. Solonnikov N. N. Uralceva: Linear and quasilinear equations of parabolic type.(Russian). Moskva, Nauka (1967).
Reference: [5] J. L. Lions: Quelques méthodes des résolution des problèmes aux limites non linéaires.Dunod, Paris (1969). MR 0259693
Reference: [6] A. Matsumura T. Nishida: Initial boundary value problems for the equation of motion of compressible viscous and heat conductive fluids.Comm. Math. Phys. 89 (1983), 445 - 464. MR 0713680, 10.1007/BF01214738
Reference: [7] A. Matsumura T. Nishida: The initial value problem for the equations of motion of viscous and heat conductive gasses.J. Math. Kyoto Univ. 20 (1980), 67-104. MR 0564670, 10.1215/kjm/1250522322
Reference: [8] S. Mizohata: Theory of partial differential equations.(Russian). Moskva, Mir (1977).
Reference: [9] J. Nečas A. Novotný M. Šilhavý: Global solution to the compressible isothermal multipolar fluid.to appear J. Math. Anal. Appl. (1991). MR 1135273
Reference: [10] J. Nečas M. Šilhavý: Multipolar viscous fluids.to appear Quart. Appl. Math. MR 1106391
Reference: [11] J. Neustupa: The global weak solvability of a regularized system of the Navier-Stokes equations for compressible fluid.Apl. Mat. 33 (1988), 389-409. MR 0961316
Reference: [12] J. Neustupa A. Novotný: Uniqueness to the regularized viscous compressible heat conductive flow.to appear.
Reference: [13] M. Padula: Existence of global solutions for 2-dimensional viscous compressible flow.J. Funct. Anal. 69 (1986), 1-20. MR 0864756, 10.1016/0022-1236(86)90108-4
Reference: [14] R. Rautman: The uniqueness and regularity of the solutions of Navier-Stokes problems.Lecture Notes in Math. Vol. 561, Springer-Verlag (1976). MR 0463727, 10.1007/BFb0087652
Reference: [15] A. Tani: On the first initial boundary value problem of compressible viscous fluid.Publ. RIMS Kyoto Univ. 13 (1977), 193 - 253. Zbl 0366.35070, 10.2977/prims/1195190106
Reference: [16] R. Temam: Navier-Stokes equations.Amsterdam-New York-Oxford (1979). Zbl 0454.35073
Reference: [17] A. Valli: An existence theorem for compressible viscous fluids.Ann. Mat. Рurа Appl. 130 (1982), 197-213. Zbl 0599.76082, MR 0663971, 10.1007/BF01761495
.

Files

Files Size Format View
AplMat_36-1991-6_2.pdf 1.614Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo