Previous |  Up |  Next

Article

Title: $(R,S)$-information radius of type $t$ and comparison of experiments (English)
Author: Taneja, Inder Jeet
Author: Pardo, L.
Author: Morales, D.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 6
Year: 1991
Pages: 440-455
Summary lang: English
.
Category: math
.
Summary: Various information, divergence and distance measures have been used by researchers to compare experiments using classical approaches such as those of Blackwell, Bayesian ets. Blackwell's [1] idea of comparing two statistical experiments is based on the existence of stochastic transformations. Using this idea of Blackwell, as well as the classical bayesian approach, we have compared statistical experiments by considering unified scalar parametric generalizations of Jensen difference divergence measure. (English)
Keyword: divergence measures
Keyword: information radius
Keyword: statistical experiment
Keyword: sufficiency of experiments
Keyword: Shannon's entropy
Keyword: comparison of experiments
Keyword: stochastic transformations;
Keyword: unified scalar parametric generalizations of Jensen difference divergence measure
MSC: 62B10
MSC: 62B15
MSC: 94A15
MSC: 94A17
idZBL: Zbl 0748.62003
idMR: MR1134921
DOI: 10.21136/AM.1991.104481
.
Date available: 2008-05-20T18:42:38Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104481
.
Reference: [1] Blackwell D. (1951): Comparison of experiments.Proc. 2nd Berkeley Symp. Berkeley: University of California Press, 93-102. MR 0046002
Reference: [2] Burbea J. (1984): The Bose-Einstein Entropy of degree a and its Jensen Difference.Utilitas Math. 25, 225-240. MR 0752861
Reference: [3] Burbea J., Rao C . R. (1982): Entropy Differential Metric, Distance and Divergence Measures in Probability Spaces: A Unified Approach.J. Multi. Analy. 12, 575 - 596. MR 0680530, 10.1016/0047-259X(82)90065-3
Reference: [4] Burbea J., Rao C. R. (1982): On the Convexity of some Divergence Measures based on Entropy Functions.IEEE Trans. on Inform. Theory IT-28, 489-495. MR 0672884
Reference: [5] Capocelli R. M., Taneja I. J. (1984): Generalized Divergence Measures and Error Bounds.Proc. IEEE Internat. Conf. on Systems, man and Cybernetics, Oct. 9-12, Halifax, Canada, pp. 43 - 47.
Reference: [6] Campbell L. L. (1986): An extended Čencov characterization of the Information Metric.Proc. Ann. Math. Soc., 98, 135-141. MR 0848890
Reference: [7] Čencov N. N. (1982): Statistical Decisions Rules and Optimal Inference.Trans. of Math. Monographs, 53, Am. Math. Soc., Providence, R. L. MR 0645898
Reference: [8] De Groot M. H. (1970): Optimal Statistical Decisions.McGraw-Hill. New York. MR 0356303
Reference: [9] Ferentinos K., Papaioannou T. (1982): Information in experiments and sufficiency.J. Statist. Plann. Inference 6, 309-317. MR 0667911, 10.1016/0378-3758(82)90001-5
Reference: [10] Goel P. K., De Groot (1979): Comparison of experiments and information measures.Ann. Statist. 7, 1066-1077. MR 0536509, 10.1214/aos/1176344790
Reference: [11] Kullback S., Leibler A. (1951): On information and sufficiency.Ann. Math Stat. 27, 986-1005.
Reference: [12] Lindley D. V. (1956): On a measure of information provided by an experiment.Ann. Math. Statis. 27, 986-1005. MR 0083936, 10.1214/aoms/1177728069
Reference: [13] Marshall A. W., Olkin I. (1979): Inequalities: Theory of Majorization and its Applications.Academic Press. New York. MR 0552278
Reference: [14] Morales D., Taneja I. J., Pardo L.: Comparison of Experiments based on $\phi$-Measures of Jensen Difference.Communicated.
Reference: [15] Pardo L., Morales D., Taneja I. J.: $\lambda$-measures of hypoentropy and comparison of experiments: Bayesian approach.To appear in Statistica. Zbl 0782.62011, MR 1173196
Reference: [16] Rao C. R. (1982): Diversity and Dissimilarity Coefficients: A Unified Approach.J. Theoret. Pop. Biology, 21, 24-43. MR 0662520, 10.1016/0040-5809(82)90004-1
Reference: [17] Rao C. R., Nayak T. K. (1985): Cross Entropy, Dissimilarity Measures and characterization of Quadratic Entropy.IEEE Trans, on Inform. Theory, IT-31(5), 589-593. MR 0808230, 10.1109/TIT.1985.1057082
Reference: [18] Sakaguchi M. (1964): Information Theory and Decision Making.Unpublished Lecture Notes, Statist. Dept., George Washington Univ., Washington DC.
Reference: [19] Sanťanna A. P., Taneja I. J.: Trigonometric Entropies, Jensen Difference Divergence Measures and Error Bounds.Information Sciences 25, 145-156. MR 0794765
Reference: [20] Shannon C. E. (1948): A Mathematical Theory of Communications.Bell. Syst. Tech. J. 27, 379-423. MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [21] Sibson R. (1969): Information Radius.Z. Wahrs. und verw. Geb. 14, 149-160. MR 0258198, 10.1007/BF00537520
Reference: [22] Taneja I. J.: 1(983): On characterization of J-divergence and its generalizations.J. Combin. Inform. System Sci. 8, 206-212. MR 0783757
Reference: [23] Taneja I. J. (1986): $\lambda$-measures of hypoentropy and their applications.Statistica, anno XLVI, n. 4, 465-478. MR 0887303
Reference: [24] Taneja I. J. (1986): Unified Measure of Information applied to Markov Chains and Sufficiency.J. Comb. Inform. & Syst. Sci., 11, 99-109. MR 0966074
Reference: [25] Taneja I. J. (1987): Statistical aspects of Divergence Measures.J. Statist. Plann. & Inferen., 16, 137-145. MR 0895754, 10.1016/0378-3758(87)90063-2
Reference: [26] Taneja I. J. (1989): On Generalized Information Measures and their Applications.Adv. Elect. Phys. 76, 327 - 413. Academic Press.
Reference: [27] Taneja I. J. (1990): Bounds on the Probability of Error in Terms of Generalized Information Radius.Information Sciences. 46.
Reference: [28] Taneja I. J., Morales D., Pardo L. (1991): $\lambda$-measures of hypoentropy and comparison of experiments: Blackwell and Lehemann approach.Kybernetika, 27, 413 - 420. MR 1132603
Reference: [29] Vajda I. (1968): Bounds on the Minimal Error Probability and checking a finite or countable number of Hypothesis.Inform. Trans. Problems 4, 9-17. MR 0267685
Reference: [30] Vajda I. (1989): Theory of Statistical Inference and Information.Kluwer Academic Publishers, Dordrecht/Boston/London/.
.

Files

Files Size Format View
AplMat_36-1991-6_4.pdf 2.769Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo