Previous |  Up |  Next

Article

Title: On a trivariate Poisson distribution (English)
Author: Loukas, Sotirios
Author: Papageorgiou, H.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 6
Year: 1991
Pages: 432-439
Summary lang: English
.
Category: math
.
Summary: A four parameter trivariate Poisson distribution is considered. Recurrences for the probabilities and the partial derivatives of the probabilities with respect to the parameters are derived. Solutions of the maximum likelihood equations are obtaired and the determinant of their asymptotic covariance matrix is given. Applications of the maximum likelihood estimation technique to simulated data sets are also examined. (English)
Keyword: trivariate Poisson distribution
Keyword: recurrence relationships
Keyword: estimation
Keyword: information matrix
Keyword: maximum likelihood
Keyword: simulation
Keyword: partial derivatives
Keyword: determinant
Keyword: asymptotic covariance matrix
MSC: 62E10
MSC: 62E15
MSC: 62F10
idZBL: Zbl 0742.62012
idMR: MR1134920
DOI: 10.21136/AM.1991.104480
.
Date available: 2008-05-20T18:42:35Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104480
.
Reference: [1] J. T. Campbell: The Poisson correlation function.Proc. Edin. Math. Soc. 4 (1934), 18-26. Zbl 0009.02801, 10.1017/S0013091500024135
Reference: [2] P. Ноlgate: Estimation for the bivariate Poisson distribution.Biometrika 51 (1964), 241 - 245. MR 0172374, 10.1093/biomet/51.1-2.241
Reference: [3] N. L. Johnson S. Kotz: Distributions in Statistics: Discrete Distributions.Houghton Mifflin Co., Boston, 1969. MR 0268996
Reference: [4] K. Kawamura: The structure of trivariate Poisson distribution.Kōdai Math. Sem. Rep. 28 (1976), 1-8. Zbl 0349.60013, MR 0428381, 10.2996/kmj/1138847374
Reference: [5] K. Kawamura: The structure of multivariate Poisson distribution.Kōdai Math. J. 2 (1979), 337-345. Zbl 0434.60019, MR 0553239
Reference: [6] C. D. Kemp H. Papageorgiou: Bivariate Hermite distributions.Sankhyā Ser. A 44 (1982), 269-280. MR 0688806
Reference: [7] A. S. Krishnamoorthy: Multivariate binomial and Poisson distributions.Sankhyā 11 (1951), 117-124. Zbl 0044.13502, MR 0044789
Reference: [8] S. Loukas C. D. Kemp: On computer sampling from trivariate and multivariate discrete distributions.J. Statist. Comput. Simul. 17 (1983), 113-123. 10.1080/00949658308810648
Reference: [9] D. M. Mahamunulu: A note on regression in the multivariate Poisson distribution.J. Amer. Statist. Assoc. 62 (1967), 251-258. Zbl 0147.37802, MR 0216613, 10.1080/01621459.1967.10482905
Reference: [10] H. Papageorgiou: Bivariate "Short" distributions.Commun. Statist. - Theor. Meth. 15 (1986), 893-905. Zbl 0613.62021, MR 0832086, 10.1080/03610928608829158
Reference: [11] C. R. Rao: Linear Statistical Inference and its Applications.Wiley, New York, 1965. Zbl 0137.36203, MR 0221616
Reference: [12] Z. Šidák: A chain of inequalities for some types of multivariate distributions.Colloquia Mathematica Societatis János Bolyai 1972, 693 - 699. MR 0370927
Reference: [13] Z. Šidák: A chain of inequalities for some types of multivariate distributions, with nine special cases.Aplikace Matematiky 18 (1973), 110-118. MR 0315842
Reference: [14] Z. Šidák: On probabilities in certain multivariate distributions: Their dependence on correlations.Aplikace Matematiky 18 (1973), 128-135. MR 0314197
Reference: [15] H. Teicher: On the multivariate Poisson distribution.Skand. Actuar. 37 (1954), 1 - 9. Zbl 0056.35801, MR 0077050
.

Files

Files Size Format View
AplMat_36-1991-6_3.pdf 1.222Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo