Previous |  Up |  Next

Article

Title: Recursive estimates of quantile based on 0-1 observations (English)
Author: Charamza, Pavel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 3
Year: 1992
Pages: 173-192
Summary lang: English
.
Category: math
.
Summary: The objective of this paper is to introduce some recursive methods that can be used for estimating an $LD-50$ value. These methods can be used more generally for the estimation of the $\gamma$-quantile of an unknown distribution provided we have 0-1 observations at our disposal. Standard methods based on the Robbins-Monro procedure are introduced together with different approaches of Wu or Mukerjee. Several examples are also mentioned in order to demonstrate the usefulness of the methods presented. (English)
Keyword: nonparametric methods
Keyword: isotonic regression
Keyword: quantile
Keyword: recursive methods
Keyword: $LD-50$ value
Keyword: 0-1 observations
Keyword: Robbins-Monro procedure
Keyword: examples
Keyword: stochastic approximation
MSC: 62G05
MSC: 62L20
MSC: 62P10
idZBL: Zbl 0764.62068
idMR: MR1157454
DOI: 10.21136/AM.1992.104502
.
Date available: 2008-05-20T18:43:32Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104502
.
Reference: [1] Barlow R. E., Bartholomew D. J., Bremner J. M., and Brunk H.D.: Statistical Inference Under Order Restrictions.Wiley, London, 1972.
Reference: [2] Blum J. R.: Multidimensional stochastic approximation procedures.AMS 25 (1954), 737-744. MR 0065092
Reference: [3] Charamza P.: Stochastic approximation on the lattice.Diploma work, Faculty of mathematics and physics, Charles University Prague, 1984. (In Czech.)
Reference: [4] Charamza P.: Software for stochastic approximation.Proceedings of the conference ROBUST 1990.
Reference: [5] Derman C.: Non-parametric up-and-down experimentation.AMS 28 (1957), 795-797. Zbl 0084.14801, MR 0090956
Reference: [6] Dixon Mood: A method for obtaining and analyzing sensitivity data.JASA 43 (1948), 109-126. 10.1080/01621459.1948.10483254
Reference: [7] Dupač V.: Quasiisotonic regression and stochastic approximation.Metrika 34 (1987), 117-123. MR 0882505, 10.1007/BF02613138
Reference: [8] Dupač V., Henkenrath U.: On integer stochastic approximation.Aplikace matematiky 29 (1984), 372-383. MR 0772272
Reference: [9] Fabián V.: On asymptotic normality in stochastic approximation.AMS 39 (1968), 1327-1332. MR 0231429
Reference: [10] Holst U.: Recursive estimation of quantiles.Contributions to probability and statistics in honor of Gunnar Blom, Univ. Lund, 1985, pp. 179-188. Zbl 0575.62074, MR 0795057
Reference: [11] Lord P. M.: Tailored testing. An application of stochastic approximation.Journal of the American Statistical Association 66 (1971), 707-711. Zbl 0257.62049, 10.1080/01621459.1971.10482333
Reference: [12] Mukerjee H. G.: A stochastic approximation by observation on a discrete lattice using isotonic regression.AMS 9 (1981), 1020-1025. MR 0628757
Reference: [13] Nevelson M. B.: On the properties of the recursive estimates for a functional of an unknown distribution function.Limit Theorems of Probability Theory (P. Revezs, eds.), Amsterodam, 1975, pp. 227-252. MR 0395113
Reference: [14] Robbins H., Lai T. L.: Adaptive design and stochastic approximation.AS 7 (1979), 1196-1221. Zbl 0426.62059, MR 0550144
Reference: [15] Robbins H., Lai T. L.: Consistency and asymptotic efficiency of slope estimates in stochastic approximation schemes.Z. Wahrsch. Verw. Gebiete 56 (1981), 329-360. Zbl 0472.62089, MR 0621117, 10.1007/BF00536178
Reference: [16] Roth, Josífko, Malý, Trčka: Statistical methods in experimental medicine.Státní. zdravotnické nakladatelství, Praha, 1962, pp. 592. (In Czech.)
Reference: [17] Sacks J.: Asymptotic distribution of stochastic approximation procedures.AMS 29 (1958), 373-405. Zbl 0229.62010, MR 0098427
Reference: [18] Wu C.F. J.: Efficient sequential designs with binary data.Journal of the American Statistical Association 80 (1985), 974-984. Zbl 0588.62133, MR 0819603, 10.1080/01621459.1985.10478213
Reference: [19] Silvapulle M. J.: On the existence of maximum likelihood estimators for the binomial response problem.Journal of the Royal Statistical Society, Ser. B 43 (1981), 310-313. MR 0637943
.

Files

Files Size Format View
AplMat_37-1992-3_2.pdf 2.067Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo