MSC:
62F10,
62J02,
62K05,
62K99,
62P99,
65C99 | MR 1185799 | Zbl 0764.62065 | DOI: 10.21136/AM.1992.104522

Full entry |
PDF
(21.3 MB)
Feedback

3-dimensional multivertex reconstruction; 2-dimensional tracks observations; projections; reconstruction of vertices; noisy observations; likelihood inference for mixtures

References:

[1] Böhning D: **Likelihood inference for mixtures: geometrical and other constructions of monotone step-length algorithms**. Biometrika 76 no. 2 (1989), 375-383. DOI 10.1093/biomet/76.2.375 | MR 1016029

[2] Fedorov V. V.: **Theory of Optimal Experiments**. Academic Press, New York, 1972. MR 0403103

[3] Lindsay B. G.: **The geometry of mixture likelihoods: a general theory**. Annals of Stat. 11 no. 1 (1983), 86-94. DOI 10.1214/aos/1176346059 | MR 0684866 | Zbl 0512.62005

[4] Mallet A.: **A maximum likelihood estimation method for random coefficient regression models**. Biometrika 73 no. 3 (1986), 645-656. DOI 10.1093/biomet/73.3.645 | MR 0897856 | Zbl 0615.62083

[5] Pázman A.: **Foundations of Optimum Experimental Design**. co-editor VEDA, Bratislava, Reidel, Dordrecht, 1986. MR 0838958

[7] Torsney B.: **A moment inequality and monotonicity of an algorithm**. Semi-Infinite Programming and Applications (A. V. Fiacco and K. O. Kortanek, eds.), Springer-Verlag, Berlin, 1983, pp. 249-260. MR 0709281 | Zbl 0512.90082

[8] Torsney B.: **Computing optimizing distributions with applications in design, estimation and image processing**. Optimal Design and Analysis of Experiments (Y. Dodge, V. V. Fedorov and H. P. Wynn, eds.), North-Holland, Amsterdam, 1988, pp. 361-370.

[9] Wynn H. P.: **The sequential generation of D-optimum experimental designs**. Annals of Math. Stat. 41 (1970), 1655-1664. DOI 10.1214/aoms/1177696809 | MR 0267704 | Zbl 0224.62038