Previous |  Up |  Next

Article

Title: 3-dimensional multivertex reconstruction from 2-dimensional tracks observations using likelihood inference (English)
Author: Chernov, N. I.
Author: Ososkov, G. A.
Author: Pronzato, L.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 6
Year: 1992
Pages: 437-452
Summary lang: English
.
Category: math
.
Summary: Let $v_1, v_2,..., v_k$ be vertices in the $XYZ$-space, each vertex producing several tracks (straight lines) emanating from it within a narrow cone with a small angle about a fixed direction ($Z$-axis). Each track is detected (by drift chambers or other detectors) by its projections on $XY$ and $YZ$ views independently with small errors. An automated method is suggested for the reconstruction of vertices from noisy observations of the tracks projections. The procedure is based on the likelihood inference for mixtures. An illustrative example is considered. (English)
Keyword: 3-dimensional multivertex reconstruction
Keyword: 2-dimensional tracks observations
Keyword: projections
Keyword: reconstruction of vertices
Keyword: noisy observations
Keyword: likelihood inference for mixtures
MSC: 62F10
MSC: 62J02
MSC: 62K05
MSC: 62K99
MSC: 62P99
MSC: 65C99
idZBL: Zbl 0764.62065
idMR: MR1185799
DOI: 10.21136/AM.1992.104522
.
Date available: 2008-05-20T18:44:27Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104522
.
Reference: [1] Böhning D: Likelihood inference for mixtures: geometrical and other constructions of monotone step-length algorithms.Biometrika 76 no. 2 (1989), 375-383. MR 1016029, 10.1093/biomet/76.2.375
Reference: [2] Fedorov V. V.: Theory of Optimal Experiments.Academic Press, New York, 1972. MR 0403103
Reference: [3] Lindsay B. G.: The geometry of mixture likelihoods: a general theory.Annals of Stat. 11 no. 1 (1983), 86-94. Zbl 0512.62005, MR 0684866, 10.1214/aos/1176346059
Reference: [4] Mallet A.: A maximum likelihood estimation method for random coefficient regression models.Biometrika 73 no. 3 (1986), 645-656. Zbl 0615.62083, MR 0897856, 10.1093/biomet/73.3.645
Reference: [5] Pázman A.: Foundations of Optimum Experimental Design.co-editor VEDA, Bratislava, Reidel, Dordrecht, 1986. MR 0838958
Reference: [6] Silvey S. D.: Optimal Design.Chapman & Hall, London, 1980. Zbl 0468.62070, MR 0606742
Reference: [7] Torsney B.: A moment inequality and monotonicity of an algorithm.Semi-Infinite Programming and Applications (A. V. Fiacco and K. O. Kortanek, eds.), Springer-Verlag, Berlin, 1983, pp. 249-260. Zbl 0512.90082, MR 0709281
Reference: [8] Torsney B.: Computing optimizing distributions with applications in design, estimation and image processing.Optimal Design and Analysis of Experiments (Y. Dodge, V. V. Fedorov and H. P. Wynn, eds.), North-Holland, Amsterdam, 1988, pp. 361-370.
Reference: [9] Wynn H. P.: The sequential generation of D-optimum experimental designs.Annals of Math. Stat. 41 (1970), 1655-1664. Zbl 0224.62038, MR 0267704, 10.1214/aoms/1177696809
.

Files

Files Size Format View
AplMat_37-1992-6_3.pdf 21.36Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo