Previous |  Up |  Next

Article

Title: Oscillations of a nonlinearly damped extensible beam (English)
Author: Feireisl, Eduard
Author: Herrmann, Leopold
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 6
Year: 1992
Pages: 469-478
Summary lang: English
.
Category: math
.
Summary: It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times. (English)
Keyword: oscillations
Keyword: nonlinear beam
Keyword: weak solution
Keyword: uniform oscillatory interval
MSC: 35B05
MSC: 35B40
MSC: 35Q20
MSC: 35Q99
MSC: 73D35
MSC: 73K05
MSC: 73K12
MSC: 74H45
MSC: 74K10
idZBL: Zbl 0769.73048
idMR: MR1185802
DOI: 10.21136/AM.1992.104525
.
Date available: 2008-05-20T18:44:37Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104525
.
Reference: [1] Вall J: Initial-boundary value problems for an extensible beam.J. Math. Anal. Appl. 42 (1973), 61-90. MR 0319440, 10.1016/0022-247X(73)90121-2
Reference: [2] Ball J.: Stability theory for an extensible beam.J. Differential Equations 14 (1973), 339-418. Zbl 0247.73054, MR 0331921, 10.1016/0022-0396(73)90056-9
Reference: [3] Cazenave T., Haraux A.: Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires.C. R. Acad. Sc. Paris 298 Sér. I no. 18 (1984), 449-452. Zbl 0571.35074, MR 0750743
Reference: [4] Cazenave T., Haraux A.: Oscillatory phenomena associated to semilinear wave equations in one spatial dimension.Trans. Amer. Math. Soc. 300 (1987), 207-233. Zbl 0628.35058, MR 0871673, 10.1090/S0002-9947-1987-0871673-2
Reference: [5] Cazenave T., Haraux A.: Some oscillatory properties of the wave equation in several space dimensions.J. Functional Anal. 76 (1988), 87-109. Zbl 0656.35099, MR 0923046, 10.1016/0022-1236(88)90050-X
Reference: [6] Eisley J. G.: Nonlinear vibrations of beams and rectangular plates.Z. Angew. Math. Phys. 15 (1964), 167-175. MR 0175375, 10.1007/BF01602658
Reference: [7] Feireisl E., Herrmann L., Vejvoda O.: A Landesman-Lazer type condition and the long time behavior of floating plates.preprint, 1991. MR 1309062
Reference: [8] Haraux A., Zuazua E.: Super-solutions of eigenvalue problems and the oscillation properties of second order evolution equations.J. Differential Equations 74 (1988), 11-28. Zbl 0654.34018, MR 0949622, 10.1016/0022-0396(88)90015-0
Reference: [9] Herrmann L.: Optimal oscillatory time for a class of second order nonlinear dissipative ODE.preprint. Zbl 0772.34030, MR 1175931
Reference: [10] Kopáčková M., Vejvoda O.: Periodic vibrations of an extensible beam.Časopis pro pěstování matematiky 102 (1977), 356-363. MR 0492762
Reference: [11] Kreith K.: Oscillation theory.Lecture Notes in Mathematics 324, Springer Verlag, 1973. Zbl 0258.35001
Reference: [12] Kreith K., Kusano T., Yoshida N.: Oscillation properties on nonlinear hyperbolic equations.SIAM J. Math. Anal. 15 no. 3 (1984). MR 0740696, 10.1137/0515043
Reference: [13] Lions J.-L., Magenes E.: Problèmes aux limites non homogènes et applications I.Ch. 3, Sec. 8.4, Dunod, Paris.
Reference: [14] Lovicar V.: Periodic solutions of nonlinear abstract second order equations with dissipative terms.Časopis pro pěstování matematiky 102 (1977), 364-369. Zbl 0369.34017, MR 0508656
Reference: [15] Lunardi A.: Local stability results for the elastic beam equation.SIAM J. Math. Anal. 18 no. 5 (987), 1341-1366. Zbl 0643.35055, MR 0902336
Reference: [16] McKenna Walter W.: Nonlinear oscillations in a suspension bridge.Arch. Rational Mech. Anal. 98 (1987), 167-177. MR 0866720, 10.1007/BF00251232
Reference: [17] Temam R.: Infinite-dimensional dynamical systems in mechanics and physics, Ch, 2, Sec. 4.1.Applied Mathematical Sciences 68, Springer Verlag, 1988, MR 0953967
Reference: [18] Woinowski-Krieger S.: The effect of an axial force on the vibration of hinged bars.J. Appi. Mech. 17 (1950), 35-36. MR 0034202
Reference: [19] Yoshida N.: On the zeros of solutions of beam equation.Annali Mat. Pura Appl. 151 (1988), 389-398. MR 0964521, 10.1007/BF01762806
Reference: [20] Zuazua E.: Oscillation properties for some damped hyperbolic problems.Houston J. Math. 16 (1990), 25-52. MR 1071264
.

Files

Files Size Format View
AplMat_37-1992-6_6.pdf 10.49Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo