Previous |  Up |  Next

Article

Title: A necessary and sufficient criterion to guarantee feasibility of the interval Gaussian algorithm for a class of matrices (English)
Author: Mayer, Günter
Author: Pieper, Lars
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 3
Year: 1993
Pages: 205-220
Summary lang: English
.
Category: math
.
Summary: A necessary and sufficient to guarantee feasibility of the interval Gaussian algorithms for a class of matrices. We apply the interval Gaussian algorithm to an $n \times n$ interval matrix $[A]$ the comparison matrix $\left\langle [A]\right\rangle$ of which is irreducible and diagonally dominant. We derive a new necessary and sufficient criterion for the feasibility of this method extending a recently given sufficient criterion. (English)
Keyword: linear interval equations
Keyword: Gaussian algorithm
Keyword: interval Gaussian algorithm
Keyword: linear systems of equations
Keyword: criteria of feasibility
Keyword: interval analysis
MSC: 65F05
MSC: 65F10
MSC: 65G10
MSC: 65G30
idZBL: Zbl 0782.65044
idMR: MR1218026
DOI: 10.21136/AM.1993.104547
.
Date available: 2008-05-20T18:45:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104547
.
Reference: [1] G. Alefeld: Über die Durchführbarkeit des Gaußschen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten.Computing Suppl. 1 (1977), 15-19. Zbl 0361.65017
Reference: [2] G. Alefeld, J. Herzberger: Introduction to Interval Computations.Academic Press, New York, 1983. Zbl 0552.65041, MR 0733988
Reference: [3] H. Bauch K.-U. Jahn D. Oelschlägel H. Süsse, V. Wiebigke: Intervallmathematik.BSB B.G. Teubner Verlagsgesellschaft, 1987. MR 0927085
Reference: [4] A. Berman, R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences.Academic Press, New York, 1979. Zbl 0484.15016, MR 0544666
Reference: [5] A. Frommer, G. Mayer: A new criterion to guarantee the feasibility of the interval Gaussian algorithm.SIAM J. Matrix Anal. Appl., in press. Zbl 0777.65012
Reference: [6] R. Klatte U. Kulisch M. Neaga D. Ratz, Ch. Ullrich: PASCAL-XSC, Sprachbeschreibung mit Beispielen.Springer, Berlin, 1991.
Reference: [7] G. Mayer: Old and new aspects of the interval Gaussian algorithm.Computer Arithmetic, Scientific Computation and Mathematical Modelling (E. Kaucher, S.M. Markov, G. Mayer, eds.), IMACS Annals on Computing and Applied Mathematics 12, Baltzer, Basel, 1991, pp. 329-349. MR 1189151
Reference: [8] R.E. Moore: Interval Analysis.Prentice Hall, Englewood Cliffs, N.J., 1966. Zbl 0176.13301, MR 0231516
Reference: [9] A. Neumaier: New techniques for the analysis of linear interval equations.Linear Algebra Appl. 58 (1984), 273-325. Zbl 0558.65019, MR 0739292, 10.1016/0024-3795(84)90217-9
Reference: [10] A. Neumaier: Interval Methods for Systems of Equations.Cambridge University Press, Cambridge, 1990. Zbl 0715.65030, MR 1100928
Reference: [11] K. Reichmann: Abbruch beim Intervall-Gauss-Algorithmus.Computing 22 (1979), 355-361. Zbl 0423.65018, MR 0620062, 10.1007/BF02265315
Reference: [12] R. S. Varga: Matrix Iterative Analysis.Prentice-Hall, Englewood Cliffs, N.J., 1963. Zbl 0133.08602, MR 0158502
.

Files

Files Size Format View
AplMat_38-1993-3_4.pdf 1.328Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo