Previous |  Up |  Next

Article

Title: Convergence of randomly oscillating point patterns to the Poisson point process (English)
Author: Rataj, Jan
Author: Saxl, Ivan
Author: Pelikán, Karol
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 3
Year: 1993
Pages: 221-235
Summary lang: English
.
Category: math
.
Summary: Oscillating point patterns are point processes derived from a locally finite set in a finite dimensional space by i.i.d. random oscillation of individual points. An upper and lower bound for the variation distance of the oscillating point pattern from the limit stationary Poisson process is established. As a consequence, the true order of the convergence rate in variation norm for the special case of isotropic Gaussian oscillations applied to the regular cubic net is found. To illustrate these theoretical results, simulated planar structures are compared with the Poisson point process by the quadrat count and distance methods. (English)
Keyword: Poisson point process
Keyword: asymptotically uniform distributions
Keyword: weak convergence
Keyword: variation distance
Keyword: rate of convergence
Keyword: Poisson hypothesis testing
Keyword: distance method
Keyword: quadrat count method
Keyword: oscillating point patterns
Keyword: isotropic Gaussian oscillations
MSC: 60D05
MSC: 60G55
idZBL: Zbl 0777.60040
idMR: MR1218027
DOI: 10.21136/AM.1993.104548
.
Date available: 2008-05-20T18:45:36Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104548
.
Reference: [1] A. D. Barbour: Stein's method and Poisson Process convergence.J. Appl. Prob. 25A (1988), special volume, 175-184. Zbl 0661.60034, MR 0974580, 10.2307/3214155
Reference: [2] S. Brown P. Holgate: The thinned plantation.Biometrika 61 (1974), 253-262. MR 0370747, 10.1093/biomet/61.2.253
Reference: [3] P. J. Diggle: Robust density estimation using distance methods.Biometrika 62 (1975), 39-48. Zbl 0296.62030, MR 0381100, 10.1093/biomet/62.1.39
Reference: [4] P. J. Diggle: Statistical Analysis of Point Processes.Academic Press, London, 1983. MR 0743593
Reference: [5] P. Holgate: The distance from a random point to the nearest point of a closely packed lattice.Biometrika 52 (1965), 261-263. MR 0208633, 10.1093/biomet/52.1-2.261
Reference: [6] O. Kallenberg: Random Measures.Academic Press, London, 1983. Zbl 0544.60053, MR 0818219
Reference: [7] K. Matthes J. Kerstan J. Mecke: Infinitely Divisible Point Processes.J. Wiley & Sons, Chichester, 1978. MR 0517931
Reference: [8] O. Persson: Distance methods.Studia Forestalia Suecica 15 (1964), 1-68.
Reference: [9] I. Saxl J. Rataj: Distances of spherical contact in lattices of figures and lattice of figures with faults.In: Geometrical problems of image processing. Research in informatics. Vol. 4. (U. Eckhardt, A. Hübler, W. Nagel and G. Werner, ed.), Akademie-Verlag, Berlin, 1991, pp. 179-184. MR 1111702
Reference: [10] C. Stein: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables.Proc. 6th Berkeley Symp. Math. Statist. Prob. 2 (1970), 583-602. MR 0402873
Reference: [11] D. Stoyan W. S. Kendall J. Mecke: Stochastic Geometry and Its Applications.Akademie-Verlag, Berlin, 1987. MR 0879119
.

Files

Files Size Format View
AplMat_38-1993-3_5.pdf 1.447Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo