Previous |  Up |  Next

Article

Title: On mesh independence and Newton-type methods (English)
Author: Axelsson, Owe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 4
Year: 1993
Pages: 249-265
Summary lang: English
.
Category: math
.
Summary: Mesh-independent convergence of Newton-type methods for the solution of nonlinear partial differential equations is discussed. First, under certain local smoothness assumptions, it is shown that by properly relating the mesh parameters $H$ and $h$ for a coarse and a fine discretization mesh, it suffices to compute the solution of the nonlinear equation on the coarse mesh and subsequently correct it once using the linearized (Newton) equation on the fine mesh. In this way the iteration error will be of the same order as the discretization error. The proper relation is found to be $H=h^1^/^\alpha$where in the ideal case, $\alpha=4$. This means that in practice the coarse mesh is very coarse. To solve the coarse mesh problem it is shown that under a Hölder continuity assumption, a truncated and approximate generalized conjugate gradient method with search directions updated from an (inexact) Newton direction vector, converges globally, i.e. independent of the initial vector. Further, it is shown that the number of steps before the superlinear rate of convergence sets in is bounded, independent of the mesh parametr. (English)
Keyword: nonlinear problems
Keyword: Newton methods
Keyword: mesh-independent convergence
Keyword: two-evel mesh method
Keyword: nonlinear strongly monotone operator equations
Keyword: Hilbert space
Keyword: iteration error
Keyword: discretization error
Keyword: global convergence
Keyword: conjugate gradient type method
Keyword: superlinear rate of convergence
MSC: 47J25
MSC: 65H10
MSC: 65J15
MSC: 65L60
MSC: 65N15
idZBL: Zbl 0806.65057
idMR: MR1228507
DOI: 10.21136/AM.1993.104554
.
Date available: 2008-05-20T18:45:51Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104554
.
Reference: [1] E.L. Allgower, K. Böhmer: Application of the mesh independence principle to mesh refinement strategies.SIAM J. Numer. Anal. 24 (1987), 1335-1351. MR 0917455, 10.1137/0724086
Reference: [2] E. L. Allgower K. Böhmer F. A. Potra, W. C. Rheinboldt: A mesh-independence principle for operator equations and their discretizations.SIAM J. Numer. Anal. 23 (1986), 160-169. MR 0821912, 10.1137/0723011
Reference: [3] O. Axelsson: On global convergence of iterative methods in Iterative Solution of Nonlinear Systems of Equations.LNM # 953 (editors R. Ansore et al), Springer Verlag, 1980. MR 0678608
Reference: [4] O. Axelsson: On the global convergence of Newton step nonlinear generalized conjugate gradient methods.Report 9118, Department of Mathematics, University of Nijmegen, the Netherlands, 1991.
Reference: [5] O. Axelsson V. Eijkhout B. Polman, P. Vassilewski: Incomplete block-matrix factorization iterative methods for convection-diffusion problems.BIT 29(1989), 867-889. MR 1038134
Reference: [6] O. Axelsson, B. Layton: A two-level methods for the discretization of nonlinear boundary value problems.Report, Department of Mathematics, University of Nijmegen, the Netherlands, 1992.
Reference: [7] R. S. Dembo S. C. Eisenstat, T. Steihaug: Inexact Newton Methods.SIAM J. Numer. Anal. 19 (1982), 400-408. MR 0650059, 10.1137/0719025
Reference: [8] P. Deuflhaard, F. A. Potra: Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem.Preprint SC 90-9, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 1990.
Reference: [9] L. V. Kantorovich: On Newton's method for functional equations.Dokl. Akad. Nauk SSSR 59 (1948), 1237-1249.
Reference: [10] M.M. Vainberg: Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations.Wiley, New York, 1973. Zbl 0279.47022, MR 0467428
Reference: [11] J. Xu: .Oral communication, 1992. Zbl 1169.76302
Reference: [12] T. Yamamoto: A unified derivation of several error bounds for Newton's process.J. Соmр. Appl. Math. 12/13 (1985), 179-191. Zbl 0582.65047, MR 0793952
.

Files

Files Size Format View
AplMat_38-1993-4_4.pdf 1.694Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo