Previous |  Up |  Next

Article

Title: Discrete evolutions: Convergence and applications (English)
Author: Bohl, Erich
Author: Schropp, Johannes
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 4
Year: 1993
Pages: 266-280
Summary lang: English
.
Category: math
.
Summary: We prove a convergence result for a time discrete process of the form $x(t+h)-x(t)=hV(h,x(t+\alpha_1(t)h), ..., x(t+\alpha_L(t)h)) t=T+jh, j=0, ..., \sigma(h)-1$ under weak conditions on the function $V$. This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations. (English)
Keyword: discrete processes
Keyword: continuous processes
Keyword: convergence of discretisations
Keyword: boundary value problems
Keyword: minimizing problems
Keyword: Newton's iteration and Newton's flow
Keyword: discrete evolutions
Keyword: systems of nonlinear equations
MSC: 65H10
MSC: 65K10
MSC: 65L20
MSC: 65L99
MSC: 65Q05
MSC: 93C55
idZBL: Zbl 0823.65064
idMR: MR1228508
DOI: 10.21136/AM.1993.104555
.
Date available: 2008-05-20T18:45:55Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104555
.
Reference: [1] Boggs P. Т.: The solution of nonlinear systems of equations by A-stable integration techniques.SIAM J. Numer. Anal. 8 (1971), 767-785. Zbl 0223.65047, MR 0297121, 10.1137/0708071
Reference: [2] Bohl E.: Finite Modelle gewöhnlicher Randwertaufgaben.Teubner Studienbücher, B.G. Teubner, 1981. Zbl 0472.65070, MR 0633643
Reference: [3] Bohl E.: Mathematische Grundlagen für die Modellierung biologischer Vorgänge.Springer Hochschultexte, Springer, 1987. Zbl 0643.92001, MR 1032759
Reference: [4] Bohl E.: Mathematik und Leben, Die Frage nach dem Leben.Serie Piper (Fischer, E.P., Mainzer, K., eds.), 1990, pp. 233-263.
Reference: [5] Bohl E.: On the convergence of time-discrete processes.to appear in ZAMM 1993. MR 1302474
Reference: [6] Collet P., Eckmann J. P.: Iterated Maps on the Interval as dynamical Systems.Progress in Physics, Vol. 1, Basel. Zbl 0458.58002
Reference: [7] Dahlquist G.: Convergence and stability in the numerical integration of ordinary differential equations.Math. Scand. 4 (1956), 33-53. Zbl 0071.11803, MR 0080998, 10.7146/math.scand.a-10454
Reference: [8] Dennis J. E., Schnabel R. B.: Numerical Methods for Unconstrained Optimisation and Nonlinear Equations.Prentice-Hall Inc., Engelwood Cliffs, New Jersey, 1983. MR 0702023
Reference: [9] Gill P. E., Murray W., Wright M. H.: Practical Optimization.Academic Press, London, New York, 1981. Zbl 0503.90062, MR 0634376
Reference: [10] Grigorieff R. D.: Numerik gewöhnlicher Differentialgleichungen 1, 2.Teubner Studienbücher, B.C. Teubner, 1972. MR 0468207
Reference: [11] Hairer E., Wanner G., Norsett P. S.: Solving Ordinary Differential Equations I.Springer-Verlag, 1980. MR 1439506
Reference: [12] May R.: Simple mathematical models with very complicated dynamics.Nature 261 (1976), 459-467. 10.1038/261459a0
Reference: [13] Michaelis L., Menten M. L.: Die Kinetik der Invertinwirkung.Biochem. Z. 49(1913), 333-369.
Reference: [14] Ortega J. M., Rheinboldt W. C.: Iterative Solution of Nonlinear Equations in Several Variables.New York, San Francisco, London, 1970. Zbl 0241.65046, MR 0273810
Reference: [15] Schropp J.: Global dynamics of Newton's flow.in preparation.
Reference: [16] Werner J.: Numerische Mathematik I.Vieweg, Braunschweig/Wiesbaden, 1992.
Reference: [17] Wissel C.: Theoretische Ökologie.Springer, Berlin, Heidelberg, New York, 1989.
.

Files

Files Size Format View
AplMat_38-1993-4_5.pdf 1.435Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo