Previous |  Up |  Next

Article

Title: A modified Cayley transform for the discretized Navier-Stokes equations (English)
Author: Cliffe, K. A.
Author: Garratt, T. J.
Author: Spence, A.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 4
Year: 1993
Pages: 281-288
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the problem of computing a small number of eigenvalues of large sparse generalized eigenvalue problems. The matrices arise from mixed finite element discretizations of time dependent equations modelling viscous incompressible flow. The eigenvalues of importance are those with smallest real part and are used to determine the linearized stability of steady states, and could be used in a scheme to detect Hopf bifurcations. We introduce a modified Cayley transform of the generalized eigenvalue problem which overcomes a drawback of the usual Cayley transform applied to such problems. Standard iterative methods are then applied to the transformed eigenvalue problem. Numerical experiments are performed on large matrices arising from a discretization of the flow over a backward facing step. (English)
Keyword: block matrices
Keyword: eigenvalues
Keyword: Cayley transform
Keyword: Navier-Stokes
Keyword: large sparse generalized eigenvalue problems
Keyword: Hopf bifurcations
MSC: 15A18
MSC: 65F15
MSC: 65F50
MSC: 65M12
MSC: 76D05
MSC: 76M10
MSC: 76M25
idZBL: Zbl 0789.76064
idMR: MR1228509
DOI: 10.21136/AM.1993.104556
.
Date available: 2008-05-20T18:45:58Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104556
.
Reference: [1] W. E. Arnoldi: The principle of minimized iterations in the solution of the matrix eigenvalue problem.Quart. Appl. Math. 9 (1951), 17-29. Zbl 0042.12801, MR 0042792, 10.1090/qam/42792
Reference: [2] K. N. Christodoulou, L.E. Scriven: Finding leading modes of a viscous free surface flow: an asymmetric generalized eigenproblem.J. Sci. Comput. 3 (1988), 355-406. Zbl 0677.65032, 10.1007/BF01065178
Reference: [3] K. A. Cliffe, T .J. Garratt, and A. Spence: Iterative methods for the detection of hopf bifurcations in finite element discretizations of incompressible flow problems.Submitted SIAM J. Sci. Stat. Соmр. (1992).
Reference: [4] K .A. Cliffe T. J. Garratt A. Spence, and K. H. Winters: Eigenvalue calculations for flow over a backward facing step.AEA Decommissioning and Rad waste report, 1992.
Reference: [5] J. N. Franklin: Matrix theory.Prentice-Hall, New Jersey, 1968. Zbl 0174.31501, MR 0237517
Reference: [6] T. J. Garratt G. Moore, and A. Spence: Two methods for the numerical detection of Hopf bifurcations.In: Bifurcation and chaos: analysis, algorithms, applications (R. Seydel, F.W. Schneider, and H. Troger, eds.), Birkhäuser, 1991, pp. 119-123. MR 1109515
Reference: [7] D. K. Gartling: A test problem for outflow boundary conditions - flow over a backward facing step.Int. J. Num. Methods Fluids 11 (1990), 953-967. 10.1002/fld.1650110704
Reference: [8] G. H. Golub, C. F. van Loan: Matrix Computations.The Johns Hopkins University Press, Baltimore, Maryland, 1983. Zbl 0559.65011, MR 0733103
Reference: [9] C. P. Jackson: A finite element study of the onset of vortex shedding in flow past variously shaped bodies.J. Fluid Mech. 182 (1987), 23-45. Zbl 0639.76041, 10.1017/S0022112087002234
Reference: [10] D. S. Malkus: Eigenproblems associated with the discrete LBB condition for incompressible finite elements.Int. J. for Eng. Sci. 19(1981), 1299-1310. Zbl 0457.73051, MR 0660563
Reference: [11] G. Peters, J. H. Wilkinson: Inverse iteration, illconditioned equations and Newton's method.SIAM Rev. 21 (1979), 339-360. MR 0535118, 10.1137/1021052
Reference: [12] G. W. Stewart: Simultaneous iteration for computing invariant subspaces of nonhermitian matrices.Numer. Math. 25 (1976), 123-136. MR 0400677, 10.1007/BF01462265
Reference: [13] J. H. Wilkinson: The algebraic eigenvalue problem.Claredon Press, Oxford, 1965. Zbl 0258.65037, MR 0184422
.

Files

Files Size Format View
AplMat_38-1993-4_6.pdf 982.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo