Previous |  Up |  Next

Article

Title: Variational problems in domains with cusp points (English)
Author: Ženíšek, Alexander
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 4
Year: 1993
Pages: 381-403
Summary lang: English
.
Category: math
.
Summary: The finite element analysis of linear elliptic problems in two-dimensional domains with cusp points (turning points) is presented. This analysis needs on one side a generalization of results concerning the existence and uniqueness of the solution of a constinuous elliptic variational problem in a domain the boundary of which is Lipschitz continuous and on the other side a presentation of a new finite element interpolation theorem and other new devices. (English)
Keyword: finite element method
Keyword: nonlipschitz boundary
Keyword: cusp points (turning points)
Keyword: maximum angle condition
Keyword: minimum angle condition
Keyword: linear elliptic problems
MSC: 35J20
MSC: 35J25
MSC: 65N30
idZBL: Zbl 0790.65094
idMR: MR1228514
DOI: 10.21136/AM.1993.104561
.
Date available: 2008-05-20T18:46:14Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104561
.
Reference: [1] P. Doktor: On the density of smooth functions in certain subspaces of Sobolev Space.CMUC 14 (1973), 609-622. Zbl 0268.46036, MR 0336317
Reference: [2] M. Feistauer, and A. Ženíšek: Finite element solution of nonlinear elliptic problems.Numer. Math. 50 (1987), 451-475. MR 0875168, 10.1007/BF01396664
Reference: [3] A. Kufner: Boundary value problems in weighted spaces.Equadiff 6, Proceedings of the International Conference on Differential Equations and their Applications held in Brno, Czechoslovakia, August 1985 (J. Vosmanský and M. Zlámal, eds.), Springer- Verlag, Berlin, 1986, pp. 35-48. MR 0877105
Reference: [4] A. Kufner O. John, and S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [5] J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [6] L. A. Oganesian, and L. A. Rukhovec: Variational Difference Methods for the Solution of Elliptic Problems.Izd. Akad. Nauk ArSSR, Jerevan, 1979. (In Russian.)
Reference: [7] J. L. Synge: The Hypercircle in Mathematical Physics.Cambridge University Press, Cambridge, 1957. Zbl 0079.13802, MR 0097605
Reference: [8] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations.Academic Press, London, 1990. MR 1086876
.

Files

Files Size Format View
AplMat_38-1993-4_11.pdf 1.888Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo