Previous |  Up |  Next

Article

Title: Numerical analysis of the Navier-Stokes equations (English)
Author: Rannacher, Rolf
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 4
Year: 1993
Pages: 361-380
Summary lang: English
.
Category: math
.
Summary: This paper discusses some conceptional questions of the numerical simulation of viscous incompressible flow which are related to the presence of boundaries. (English)
Keyword: incompressibility constraint
Keyword: Chorin’s projection method
Keyword: boundary conditions
Keyword: well-posedness
Keyword: nonlinear Galerkin method
MSC: 65M60
MSC: 76D05
MSC: 76M10
MSC: 76M25
idZBL: Zbl 0798.76041
idMR: MR1228513
DOI: 10.21136/AM.1993.104560
.
Date available: 2008-05-20T18:46:11Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104560
.
Reference: [1] Blum H.: Asymptotic Error Expansion and Defect Correction in the Finite Element Method.Habilitationsschrift, Universität Heidelberg, 1991.
Reference: [2] Brezzi F., and J. Pitkäranta: On the stabilization of finite element approximations of the Stokes equations.In: Efficient Solution of Elliptic Systems (W. Hackbush, ed.), Vieweg, Braunschweig, 1984. MR 0804083
Reference: [3] Bristeau M. O., Glowinski R., and J. Periaux: Numerical methods for the Navier-Stokes equations: Applications to the simulation of compressible and incompressible viscous flows.In Computer Physics Report, Research Report UH/MD-4, University of Houston, 1987. MR 0913308
Reference: [4] Chorin A. J.: Numerical solution of the Navier-Stokes equations.Math. Соmр. 22 (1968), 745-762. Zbl 0198.50103, MR 0242392
Reference: [5] Devulder C., Marion M., and E. S.Titi: On the rate of convergence of the nonlinear Galerkin methods.to appear in Math. Соmр.. MR 1160273
Reference: [6] Foias C., Manley О., and R. Теmam: Modelling of the interaction of small and large eddies in two dimensional turbulent flows.$M^2$ AN 22 (1988), 93-114. MR 0934703
Reference: [7] Girault V., and P. A. Raviart: Finite Element Methods for Navier-Stokes Equations.Springer, Berlin-Heidelberg, 1986. MR 0851383
Reference: [8] Gresho P. M., and S. T. Chan: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix Part 1: Theory, Part 2: Implementation.Int. J. Numer. Meth. in Fluids 11 (1990), 587-620, 621-659. MR 1074826, 10.1002/fld.1650110509
Reference: [9] Gresho P. M.: Some current CFD issues relevant to the incompressible Navier-Stokes equations.Соmр. Meth. Appl. Mech. Eng. 87(1991), 201-252. Zbl 0760.76018, MR 1118944, 10.1016/0045-7825(91)90006-R
Reference: [10] Harig J.: A 3-d finite element upwind approximation of the stationary Navier Stokes equations.IWR-Report, Universität Heidelberg, 1991.
Reference: [11] Heywood J. G.: On uniqueness questions in the theory of viscous flow.Acta math. 136 (1976), 61-102. Zbl 0347.76016, MR 0425390, 10.1007/BF02392043
Reference: [12] Heywood J .G., R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. Part 1: regularity of solutions and second-order error estimates for spatial discretization.SIAM J. Numer. Anal 19 (1982), 275-311 MR 0650052, 10.1137/0719018
Reference: [12b] Heywood J. G., R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. Part 2: Stability of solutions and error estimates uniform in time.ibidem 23, (1986), 750-777 MR 0849281
Reference: [12c] Heywood J.G., R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. Part 3: Smoothing property and higher order error estimates for spatial discretization.ibidem 25 (1988), 489-512 MR 0942204
Reference: [12d] Heywood J.G., R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. Part 4: error analysis for second-order time discretization.ibidem 27 (1990), 353-384. MR 1043610
Reference: [13] Heywood J. G., Rannacher R., and S.Turek: Artifical boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations.Universität Heidelberg, April 1992, Preprint. MR 1380844
Reference: [14] Heywood J. G., R. Rannacher: On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method.Universität Heidelberg, May 1992, Preprint. MR 1249035
Reference: [15] Hughes T. J. R., Franca L. P., and M. Balestra: A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommoding equal order interpolation.Соmр. Meth. Appl. Mech. Eng. 59 (1986), 85-99. MR 0868143, 10.1016/0045-7825(86)90025-3
Reference: [16] Kracmar S., and J. Neustupa: Global existence of weak solutions of a nonstationary variational inequality of the Navier-Stokes type with mixed boundary conditions.Dept. of Techn. Math., Czech Techn. Univ, Praha, 1992, Preprint.
Reference: [17] Marion M., and R. Temam: Nonlinear Galerkin methods: The finite element case.Numer. Math. 57, (1990), 205-226. MR 1057121, 10.1007/BF01386407
Reference: [18] Prohl A., and R. Rannacher: On some pseudo-compressibility methods for the Navier-Stokes equations.in preparation.
Reference: [19] Rannacher R.: Numerical analysis of nonstationary fluid flow (a survey).In: Applications of Mathematics in Industry and Technology (V. C. Boffi and H. Neunzert, eds.), Teubner, Stuttgart, 1989, pp. 34-53. MR 1079942
Reference: [20] Rannacher R.: On Chorin's projection method for the incompressible Navier-Stokes equations.Springer, (R. Rautmann, et.al., eds.), Proc. Oberwolfach Conf., 19.-23. 8. 1991.
Reference: [21] Rannacher R., and S. Turek: Simple nonconforming quadrilateral Stokes elements.Numer. Meth. Part. Diff. Equ. 8 (1992), 97-111. MR 1148797, 10.1002/num.1690080202
Reference: [22] Shen J.: On error estimates of projection methods for the Navier-Stokes equations: First order schemes.SIAM J. Numer. Anal. (1991). MR 1149084
Reference: [23] Shen J.: On error estimates of higher order projection and penalty-projection methods for Navier-Stokes equations.Dept. of Math., Indiana University, 1992, Preprint.
Reference: [24] Turek S.: Tools for simulating nonstationary incompressible flow via discretely divergence-free finite element models.Universität Heidelberg, May 1992, Preprint. MR 1255036
.

Files

Files Size Format View
AplMat_38-1993-4_10.pdf 2.843Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo