Previous |  Up |  Next

Article

Title: Efficient inexact Newton-like methods with application to problems of the deformation theory of plasticity (English)
Author: Blaheta, Radim
Author: Kohut, Roman
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 6
Year: 1993
Pages: 411-427
Summary lang: English
.
Category: math
.
Summary: Newton-like methods are considered with inexact correction computed by some inner iterative method. Composite iterative methods of this type are applied to the solution of nonlinear systems arising from the solution of nonlinear elliptic boundary value problems. Two main quastions are studied in this paper: the convergence of the inexact Newton-like methods and the efficient control of accuracy in computation of the inexact correction. Numerical experiments show the efficiency of the suggested composite iterative techniques when problems of the deformation theory of plasticity are solved. (English)
Keyword: nonlinear systems
Keyword: inexact Newton-like methods
Keyword: composite iterations
Keyword: deformation theory of plasticity
Keyword: numerical experiments
Keyword: nonlinear elliptic problems
Keyword: generalized Picard method
Keyword: secant modulus method
Keyword: preconditioned conjugate gradients
Keyword: convergence
MSC: 35J65
MSC: 65H10
MSC: 65N22
MSC: 73E99
MSC: 73V20
MSC: 74B99
MSC: 74C99
MSC: 74D99
idZBL: Zbl 0805.65048
idMR: MR1241445
DOI: 10.21136/AM.1993.104564
.
Date available: 2008-05-20T18:46:20Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104564
.
Reference: [1] Blaheta R.: Incomplete factorization preconditioning techniques for linear elasticity problems.Z. angew. Math. Mech. 71 (1991), T638-640. Zbl 0751.73063
Reference: [2] Blaheta R.: Displacement decomposition-incomplete factorization preconditioning for linear elasticity problems.to appear in J. Numer. Lin. Alg. Appl. 1992/1993.
Reference: [3] Desai C.S., H. J. Siriwardane: Constitutive laws for engineering materials with emphasis on geologic materials.Prentice Hall, Englewood Cliffs, NJ, 1984. Zbl 0543.73004
Reference: [4] Kohut R., R. Blaheta: Efficient iterative methods for numerical solution of plasticity problems.Proc. of the NUMEG'92 Conference, Prague 1992, vol. 1, pp. 129-134.
Reference: [5] Nečas J.: Introduction to the theory of nonlinear elliptic equations.Teubner Texte zur Mathematik, Band 52, Leipzig, 1983. MR 0731261
Reference: [6] Nečas J., I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: An introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [7] Dembo R. S., Eisenstat S. C., T. Steingang: Inexact Newton methods.SIAM J. Numer. Anal. 19 (1982), 400-408. MR 0650059, 10.1137/0719025
Reference: [8] Deuflhard P.: Global inexact Newton methods for very large scale nonlinear problems.Impact of Соmр. in Science and Engng. 3 (1991), 366-393. Zbl 0745.65032, MR 1141306
.

Files

Files Size Format View
AplMat_38-1993-6_2.pdf 16.99Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo