Previous |  Up |  Next

Article

Title: Area of contraction of Newton's method applied to a penalty technique for obstacle problems (English)
Author: Böhmer, Klaus
Author: Grossmann, Christian
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 6
Year: 1993
Pages: 428-439
.
Category: math
.
Keyword: penalty method
Keyword: obstacle problem
Keyword: abstract variational problem
Keyword: inequality constraints
Keyword: linear finite elements
Keyword: Newton method
Keyword: area of contraction
MSC: 49J40
MSC: 49M30
MSC: 65K10
idZBL: Zbl 0797.65050
idMR: MR1241446
DOI: 10.21136/AM.1993.104565
.
Date available: 2008-05-20T18:46:24Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104565
.
Reference: [1] Adam S.: Numerische Verfahren für Variationsungleichungen.Dipl. thesis, TU Dresden, 1992.
Reference: [2] Allgower E. L., Böhmer K.: Application of the independence principle to mesh refinement strategies.SIAM J.Numer.Anal. 24 (1987), 1335-1351. MR 0917455, 10.1137/0724086
Reference: [3] Baiocchi C.: Estimation d'erreur dans $L_{\infty}$ pour les inéquations a obstacle.In Lecture Notes Math., vol. 606, 1977, pp. 27-34. MR 0488847
Reference: [4] Brezzi F., Fortin M: Mixed and hybrid finite element methods.Springer, Berlin, 1991. Zbl 0788.73002, MR 1115205
Reference: [5] Ciarlet P.: The finite element method for elliptic problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [6] Deuflhard P., Potra F. A.: Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem.Preprint SC 90-9, Konrad-Zuse-Zentrum, Berlin, 1990. MR 1182736
Reference: [7] Grossmann C. , Kaplan A. A.: On the solution of discretized obstacle problems by an adapted penalty method.Computing 35 (1985), 295-306. Zbl 0569.65050, MR 0825117, 10.1007/BF02240196
Reference: [8] Grossmann C., Roos H.-G.: Numerik partieller Differentialgleichungen.Teubner, Stuttgart, 1992. Zbl 0755.65087, MR 1219087
Reference: [9] Haslinger J.: Mixed formulation of elliptic variational inequalities and its approximation.Applikace Mat. 26 (1981), 462-475. Zbl 0483.49003, MR 0634283
Reference: [10] Hlaváček I., Haslinger J., Nečas J., Lovíšek J.: Numerical solution of variational inequalities.Springer, Berlin, 1988.
Reference: [11] Windisch G.: M-matrices in numerical analysis.Teubner, Leipzig, 1989. MR 1059459
.

Files

Files Size Format View
AplMat_38-1993-6_3.pdf 11.87Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo