Title:
|
Area of contraction of Newton's method applied to a penalty technique for obstacle problems (English) |
Author:
|
Böhmer, Klaus |
Author:
|
Grossmann, Christian |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
38 |
Issue:
|
6 |
Year:
|
1993 |
Pages:
|
428-439 |
. |
Category:
|
math |
. |
Keyword:
|
penalty method |
Keyword:
|
obstacle problem |
Keyword:
|
abstract variational problem |
Keyword:
|
inequality constraints |
Keyword:
|
linear finite elements |
Keyword:
|
Newton method |
Keyword:
|
area of contraction |
MSC:
|
49J40 |
MSC:
|
49M30 |
MSC:
|
65K10 |
idZBL:
|
Zbl 0797.65050 |
idMR:
|
MR1241446 |
DOI:
|
10.21136/AM.1993.104565 |
. |
Date available:
|
2008-05-20T18:46:24Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/104565 |
. |
Reference:
|
[1] Adam S.: Numerische Verfahren für Variationsungleichungen.Dipl. thesis, TU Dresden, 1992. |
Reference:
|
[2] Allgower E. L., Böhmer K.: Application of the independence principle to mesh refinement strategies.SIAM J.Numer.Anal. 24 (1987), 1335-1351. MR 0917455, 10.1137/0724086 |
Reference:
|
[3] Baiocchi C.: Estimation d'erreur dans $L_{\infty}$ pour les inéquations a obstacle.In Lecture Notes Math., vol. 606, 1977, pp. 27-34. MR 0488847 |
Reference:
|
[4] Brezzi F., Fortin M: Mixed and hybrid finite element methods.Springer, Berlin, 1991. Zbl 0788.73002, MR 1115205 |
Reference:
|
[5] Ciarlet P.: The finite element method for elliptic problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174 |
Reference:
|
[6] Deuflhard P., Potra F. A.: Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem.Preprint SC 90-9, Konrad-Zuse-Zentrum, Berlin, 1990. MR 1182736 |
Reference:
|
[7] Grossmann C. , Kaplan A. A.: On the solution of discretized obstacle problems by an adapted penalty method.Computing 35 (1985), 295-306. Zbl 0569.65050, MR 0825117, 10.1007/BF02240196 |
Reference:
|
[8] Grossmann C., Roos H.-G.: Numerik partieller Differentialgleichungen.Teubner, Stuttgart, 1992. Zbl 0755.65087, MR 1219087 |
Reference:
|
[9] Haslinger J.: Mixed formulation of elliptic variational inequalities and its approximation.Applikace Mat. 26 (1981), 462-475. Zbl 0483.49003, MR 0634283 |
Reference:
|
[10] Hlaváček I., Haslinger J., Nečas J., Lovíšek J.: Numerical solution of variational inequalities.Springer, Berlin, 1988. |
Reference:
|
[11] Windisch G.: M-matrices in numerical analysis.Teubner, Leipzig, 1989. MR 1059459 |
. |