Previous |  Up |  Next

Article

Title: Grid adjustment based on a posteriori error estimators (English)
Author: Segeth, Karel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 6
Year: 1993
Pages: 488-504
Summary lang: English
.
Category: math
.
Summary: The adjustment of one-dimensional space grid for a parabolic partial differential equation solved by the finite element method of lines is considered in the paper. In particular, the approach based on a posteriori error indicators and error estimators is studied. A statement on the rate of convergence of the approximation of error by estimator to the error in the case of a system of parabolic equations is presented. (English)
Keyword: grid adjustment
Keyword: principle of equidistribution of monitor
Keyword: a posteriori error estimate
Keyword: parabolic equation
Keyword: finite element method
Keyword: method of lines
MSC: 35K15
MSC: 65M15
MSC: 65M20
MSC: 65M50
MSC: 65M60
idZBL: Zbl 0797.65068
idMR: MR1241452
DOI: 10.21136/AM.1993.104571
.
Date available: 2008-05-20T18:46:42Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104571
.
Reference: [1] S. Adjerid J. E. Flaherty: A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations.SIAM J. Numer. Anal. 23 (1986), 778-796. MR 0849282, 10.1137/0723050
Reference: [2] S. Adjerid J.E. Flaherty Y.J. Wang: A Posteriori Error Estimation with Finite Element Methods of Lines for One-Dimensional Parabolic Systems.Tech. Report 91-1, Troy, NY, Dept. of Computer Science, Rensselaer Polytechnic Institute, 1991. MR 1217436
Reference: [3] I. Babuška W. Gui: Basic principles of feedback and adaptive approaches in the finite element method.Comput. Methods Appl. Mech. Engrg. 55 (1986), 27-42. MR 0845412, 10.1016/0045-7825(86)90084-8
Reference: [4] I. Babuška W.C. Rheinboldt: A-posteriori error estimates for the finite element method.Internat. J. Numer. Methods Engrg. 12 (1978), 1597-1615. 10.1002/nme.1620121010
Reference: [5] M. Bieterman I. Babuška: An adaptive method of lines with error control for parabolic equations of the reaction-diffusion type.J. Comput. Phys. 63 (1986), 33-66. MR 0832563, 10.1016/0021-9991(86)90083-5
Reference: [6] R. M. Furzeland J. G. Verwer P. A. Zegeling: A numerical study of three moving grid methods for one-dimensional partial differential equations which are based on the method of lines.J. Comput. Phys. 89 (1990), 349-388. MR 1067050, 10.1016/0021-9991(90)90148-T
Reference: [7] B. M. Herbst S. W. Schoombie A. R. Mitchell: Equidistributing principles in moving finite element methods.J. Comput. Appl. Math. 9 (1983), 377-389. MR 0729241, 10.1016/0377-0427(83)90009-2
Reference: [8] A. C. Hindmarsh: LSODE and LSODI, two new initial value ordinary differential equation solvers.ACM SIGNUM Newsletter 15 (1980), 10-11. 10.1145/1218052.1218054
Reference: [9] J. Hugger: Density Representation of Finite Element Meshes for One and Two Dimensional Problems, Non-Singular or with Point Singularities.Part 1 and 2, Preprint, College Park, MD, IPST, University of Maryland, 1992. MR 1195582
Reference: [10] K. Miller: Moving finite elements II.SIAM J. Numer. Anal. 18 (1981), 1033-1057. Zbl 0518.65083, MR 0638997, 10.1137/0718071
Reference: [11] K. Miller R. N. Miller: Moving finite elements I.SIAM J. Numer. Anal. 18 (1981), 1019-1032. MR 0638996, 10.1137/0718070
Reference: [12] J. T. Oden G. F. Carey: Finite Elements: Mathematical Aspects, Vol. IV.Englewood Cliffs, NJ, Prentice-Hall, 1983. MR 0767806
Reference: [13] L. R. Petzold: A Description of DDASSL: A Differential/Algebraic System Solver.Sandia Report No. Sand 82-8637, Livermore, CA, Sandia National Laboratory, 1982. MR 0751605
Reference: [14] Y. Ren R. D. Russell: Moving Mesh Techniques Based upon Equidistribution, and Their Stability.Preprint, Burnaby, B.C., Dept. of Mathematics and Statistics, Simon Fraser University, 1989. MR 1185646
Reference: [15] V. Thomée: Negative norm estimates and superconvergence in Galerkin methods for parabolic problems.Math. Соmр. 34 (1980), 93-113. MR 0551292
Reference: [16] R. Wait A. R. Mitchell: Finite Element Analysis and Applications.Chichester, J. Wiley and Sons, 1985. MR 0817440
.

Files

Files Size Format View
AplMat_38-1993-6_9.pdf 17.34Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo