Previous |  Up |  Next

Article

Title: A parameter choice for Tikhonov regularization for solving nonlinear inverse problems leading to optimal convergence rates (English)
Author: Scherzer, Otmar
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 6
Year: 1993
Pages: 479-487
Summary lang: English
.
Category: math
.
Summary: We give a derivation of an a-posteriori strategy for choosing the regularization parameter in Tikhonov regularization for solving nonlinear ill-posed problems, which leads to optimal convergence rates. This strategy requires a special stability estimate for the regularized solutions. A new proof fot this stability estimate is given. (English)
Keyword: nonlinear inverse problems
Keyword: parameter choice strategy
Keyword: nonlinear ill- posed problems
Keyword: Hilbert spaces
Keyword: Tikhonov regularization
Keyword: convergence rate
Keyword: numerical examples
MSC: 35R30
MSC: 47H15
MSC: 47J25
MSC: 65F15
MSC: 65J15
MSC: 65J20
MSC: 65M30
idZBL: Zbl 0797.65048
idMR: MR1241451
DOI: 10.21136/AM.1993.104570
.
Date available: 2008-05-20T18:46:39Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104570
.
Reference: [1] H. W. Engl H. Gfrerer: A posteriori parameter choice for general regularization methods for solving linear ill-posed problems.Appl. Num. Math. 4 (1988), 395-417. MR 0948506, 10.1016/0168-9274(88)90017-7
Reference: [2] H. W. Engl K. Kunisch A. Neubauer: Convergence rates for Tikhonov regularization of nonlinears ill-posed problems.Inverse Problems 5 (1989), 523-540. MR 1009037
Reference: [3] H. Gfrerer: An a-posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates.Mathematics of Computation 49 (1987), 507-522. Zbl 0631.65057, MR 0906185, 10.1090/S0025-5718-1987-0906185-4
Reference: [4] C. W. Groetsch: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind.Pitman, Boston, 1984. Zbl 0545.65034, MR 0742928
Reference: [5] A. Neubauer: Tikhonov regularization for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation.Inverse Problems 5 (1989), 541-557. MR 1009038
Reference: [6] O. Scherzer H. W. Engl K. Kunisch: Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems.SIAM J. on Numer. Anal., to appear. MR 1249043
Reference: [7] T. L Seidman C. R. Vogel: Well-posedness and convergence of some regularization methods for nonlinear ill-posed problems.Inverse Problems 5 (1989), 227-238. MR 0991919
.

Files

Files Size Format View
AplMat_38-1993-6_8.pdf 9.998Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo