Author: Niemenmaa, Markku
-
Niemenmaa, Markku:
On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^5$.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 61
(2020),
issue 4,
pp. 547-551
-
Niemenmaa, Markku:
On dihedral 2-groups as inner mapping groups of finite commutative inverse property loops.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 59
(2018),
issue 2,
pp. 189-193
-
Leppälä, Emma; Niemenmaa, Markku:
On dicyclic groups as inner mapping groups of finite loops.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 57
(2016),
issue 4,
pp. 549-553
-
Leppälä, Emma; Niemenmaa, Markku:
On finite commutative loops which are centrally nilpotent.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 56
(2015),
issue 2,
pp. 139-143
-
Leppälä, Emma; Niemenmaa, Markku:
A note on loops of square-free order.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 54
(2013),
issue 1,
pp. 1-3
-
Niemenmaa, Markku:
On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^4$.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 51
(2010),
issue 4,
pp. 559-563
-
Niemenmaa, Markku; Rytty, Miikka:
On central nilpotency in finite loops with nilpotent inner mapping groups.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 49
(2008),
issue 2,
pp. 271-277
-
Niemenmaa, Markku:
On the structure of finite loop capable Abelian groups.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 48
(2007),
issue 2,
pp. 217-224
-
Niemenmaa, Markku:
On abelian inner mapping groups of finite loops.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 41
(2000),
issue 4,
pp. 687-691
-
Myllylä, Kari; Niemenmaa, Markku:
On the solvability of commutative loops and their multiplication groups.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 40
(1999),
issue 2,
pp. 209-213
-
Niemenmaa, Markku:
On finite loops whose inner mapping groups have small orders.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 37
(1996),
issue 3,
pp. 651-654
Partner of