Previous |  Up |  Next

Article

Keywords:
solvability; loop; group
Summary:
We investigate the situation when the inner mapping group of a commutative loop is of order $2p$, where $p=4t+3$ is a prime number, and we show that then the loop is solvable.
References:
[1] Bruck R.H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245-354. MR 0017288 | Zbl 0061.02201
[2] Gorenstein D.: Finite Groups. Harper & Row, New York, 1968. MR 0231903 | Zbl 0695.20014
[3] Herstein I.N.: A remark on finite groups. Proc. Amer. Math. Soc. 9 (1958), 255-257. MR 0093542 | Zbl 0089.01601
[4] Neumann P.M., Stoy G., Thompson E.: Groups and Ggeometry. Oxford University Press, 1994. MR 1283590
[5] Niemenmaa M.: Transversals, commutators and solvability in finite groups. Bollettino U.M.I. (7) 9-A (1995), 203-208. MR 1324621 | Zbl 0837.20026
[6] Niemenmaa M.: On loops which have dihedral $2$-groups as inner mapping groups. Bull. Australian Math. Soc. 52 (1995), 153-160. MR 1344268 | Zbl 0838.20080
[7] Niemenmaa M.: On connected transversals to subgroups whose order is a product of two primes. European J. Comb. 18 (1997), 915-919. MR 1485376 | Zbl 0889.20044
[8] Niemenmaa M., Kepka T.: On multiplication groups of loops. J. Algebra 135 (1990), 112-122. MR 1076080 | Zbl 0706.20046
[9] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups. Bull. Australian Math. Soc. 49 (1994), 121-128. MR 1262682 | Zbl 0799.20020
[10] Niemenmaa M., Vesanen A.: On subgroups, transversals and commutators. in Proceeding of the Groups Galway/St. Andrews 1993, London Math. Soc. Lecture Notes Series 212 (1995), pp.476-481. MR 1337289 | Zbl 0862.20023
[11] Vesanen A.: Solvable groups and loops. J. Algebra 180 (1996), 862-876. MR 1379214 | Zbl 0853.20050
Partner of
EuDML logo