Previous |  Up |  Next

Article

Title: Gradient maps and boundedness of Gâ­­­­­teaux differentials (English)
Author: Kolomý, Josef
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 9
Issue: 4
Year: 1968
Pages: 613-625
.
Category: math
.
MSC: 46-45
MSC: 47Hxx
MSC: 49Axx
idZBL: Zbl 0174.46104
idMR: MR0247464
.
Date available: 2008-06-05T20:29:12Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105204
.
Reference: [1] E. S. CITLANADZE: K variacionnoj teorii odnogo klassa nelinejnych operatorov v prostranstve $L_p (p > 1).Dokl. Ak. n. SSSR 71 (1950), No 3, 441-444.
Reference: [2] E. S. CITLANADZE: O differencirovanii funkcionalov.Matem. sb. 29 (71) (1951), No 1, 3-12. MR 0043375
Reference: [3] M. M. VAJNBERG: Variacionnyje metody issledovanija nelinejnych operatorov.Moskva 1956.
Reference: [4] M. J. KADEC: O někotorych svojstvach potencial'nych operatorov v reflektivnych separabel'nych prostranstvach.Izv. vysš. učebn. zaved., mat. 15 (1960) No 2, 104-107. MR 0131188
Reference: [5] V. J. ANOSOV: Obobščenije teorem E. S. Citlanadze o svojstvach gradientov slabo něpreryvnych funkcionalov.Trudy sem. pofunkc. analizu. Voroněž 1958, vyp. 6, 1-11.
Reference: [6] E. H. ROTHE: Gradient mappings and extrema in Banach spaces.Duke Math. J. 15 (1948), 421-431. Zbl 0030.26003, MR 0029104
Reference: [7] E. H. ROTHE: Gradient mappings.Bull. Am Math. Soc. 59 (1953), 5-19. Zbl 0052.12801, MR 0052681
Reference: [8] E. H. ROTHE: A note on gradient mappings.Proc. Am. Math. Soc. 10 (1959), 931-935. MR 0110028
Reference: [9] T. ANDO: On gradient mappings in Banach spaces.Proc. Am. Math. Soc. 12 (1961), 297-299. Zbl 0096.31402, MR 0140917
Reference: [10] J. W. DANIEL: Collectively compact sets of gradient mappings.Indag. Math. 30 (1968), 270-279. Zbl 0157.45901, MR 0236758
Reference: [11] N. BOURBAKI: Topologičeskije vektornyje prostranstva.Moskva 1959.
Reference: [12] J. KOLOMÝ: On the differentiability of operators and convex functionals.Comment. Math. Univ. Carolinae 9 (1968), 441-454. MR 0238077
Reference: [13] J. DANEŠ J. KOLOMÝ: On the continuity and differentiability properties of convex functionals.Comment. Math. Univ. Carolinae 9 (1968), 329-350. MR 0239415
Reference: [14] E. ČECH: Bodové množiny.Academia, Praha 1966. MR 0229205
Reference: [15] S. BANACH: Théorie des opérations linéaires.Monografje Matematyczne, Warsaw 1932. Zbl 0005.20901
.

Files

Files Size Format View
CommentatMathUnivCarol_009-1968-4_11.pdf 1.150Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo