Previous |  Up |  Next

Article

Title: Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory (English)
Author: Sichler, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 9
Issue: 4
Year: 1968
Pages: 627-635
.
Category: math
.
MSC: 08-30
MSC: 08Axx
MSC: 18-00
idZBL: Zbl 0204.33301
idMR: MR0252305
.
Date available: 2008-06-05T20:29:15Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105205
.
Reference: [1] Z. HEDRLÍN J. LAMBEK: How comprehensive is the category of semigroups.to appear in J. of Algebra. MR 0237611
Reference: [2] Z. HEDRLÍN A. PULTR: On full embeddings of categories of algebras.Ill. J. of Math. 10 (1966), 392-406. MR 0191858
Reference: [3] A. PULTR: Eine Bemerkung über volle Einbettungen von Kategorien von Algebren.Math. Ann. 178 (1968), 78-82. Zbl 0174.30002, MR 0230794
Reference: [4] A. PULTR J. SICHLER: Primitive classes of algebras with two unary idempdent operations, containing all algebraic categories as full subcategories.to appear. MR 0253969
Reference: [5] J. SICHLER: Category of commutative groupoids is binding.Comment. Math. Univ. Carolinae 8, 4 (1967), 753-755. Zbl 0168.26703, MR 0228400
Reference: [6] J. SICHLER: ${\germ A}(1,1)$ can be strongly embedded into category of semigroups.Comment. Math. Univ. Carolinae 9, 2 (1968), 257-262. MR 0237395
Reference: [7] V. TRNKOVÁ: Strong embeddings of category of all groupoids into category of semigroups.Comment. Math. Univ. Carolinae 9, 2 (1968), 251-256. MR 0237394
.

Files

Files Size Format View
CommentatMathUnivCarol_009-1968-4_12.pdf 490.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo