Title:
|
Invariant manifolds. I. (English) |
Author:
|
Kurzweil, Jaroslav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
11 |
Issue:
|
2 |
Year:
|
1970 |
Pages:
|
309-336 |
. |
Category:
|
math |
. |
MSC:
|
34C35 |
MSC:
|
57D40 |
MSC:
|
58Axx |
idZBL:
|
Zbl 0197.47702 |
idMR:
|
MR0296963 |
. |
Date available:
|
2008-06-05T20:32:28Z |
Last updated:
|
2012-04-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105280 |
. |
Reference:
|
[1] N. LEVINSON: Small periodic perturbations of an autonomous system with a stable orbit.Ann. of Math. 52 (1950), 727-739. Zbl 0038.24903, MR 0037974 |
Reference:
|
[2] N. N. BOGOLJUBOV, Yu. A. MITROPOLSKIJ: Asymptotic methods in the theory of nonlinear oscillations.(Russian), Moscow 1955 (rev. 1958). |
Reference:
|
[3] W. T. KYNER: Invariant manifolds.Rend. del Circ. Mat. Palermo, Ser. II, 9 (1961), 98-110. Zbl 0104.06303, MR 0149038 |
Reference:
|
[4] J. K. HALE: Integral manifolds of perturbed differential systems.Ann. of Math. 73 (1961), 496-531. Zbl 0163.32804, MR 0123786 |
Reference:
|
[5] F. S. DILIBERTO: Perturbation theorems for periodic surfaces I, II.Rend. del Circ. Mat. Palermo, Ser. II, 9 (1961), 265-299, 10 (1962), 111-162. |
Reference:
|
[6] I. KUPKA: Stability des variétés invariantes d'un champ de vecteurs pour les petites perturbations.C. R. Acad. Sci. Paris, 258 Groupe 1 (1964), 4197-4200. MR 0162036 |
Reference:
|
[7] R. J. SACKER: A perturbation theorem for invariant Riemannian manifolds.Differential equations and dynamical systems, Proceedings of an International Symposium, Academic Press 1967, pp. 43-54. Zbl 0189.39801, MR 0218700 |
Reference:
|
[8] J. KURZWEIL: Invariant manifolds for flows, Differential equations and dynamical systems.Proceedings of an Internat. Symposium, Academic Press 1967, pp. 431-468. MR 0218698 |
Reference:
|
[9] J. JARNÍK J. KURZWEIL: On invariant sets and invariant manifolds of differential systems.Journ. Diff. Equat. 6 (1969), 247-263. MR 0249729 |
. |